
FR
E

E
C

O
P

Y
8

Graph Representation

Scientific results are mostly available in the form of articles in journals and con-
ference proceedings, and on various Web1resources. These articles are not self-
contained, but cite previous articles with related content. However, when you read an
article from 1975 with an interesting partial result, you may often ask yourself what
the current state of the art is. In particular, you would liketo know which newer arti-
cles cite the old article. Projects such as Google Scholar provide this functionality by
analyzing the reference sections of articles and building adatabase of articles that
efficiently supports looking up articles that cite a given article.

We can easily model this situation by a directed graph. The graph has a node for
each article and an edge for each citation. An edge(u,v) from articleu to articlev
means thatu citesv. In this terminology, every node (= article) stores all its outgoing
edges (= the articles cited by it) but not the incoming edges (the articles citing it). If
every node were also to store the incoming edges, it would be easy to find the citing
articles. One of the main tasks of Google Scholar is to construct the reversed edges.
This example shows that the cost of even a very basic elementary operation on a
graph, namely finding all edges entering a particular node, depends heavily on the
representation of the graph. If the incoming edges are stored explicitly, the operation
is easy; if the incoming edges are not stored, the operation is nontrivial.

In this chapter, we shall give an introduction to the variouspossibilities for repre-
senting graphs in a computer. We focus mostly on directed graphs and assume that an
undirected graphG = (V,E) is represented as the corresponding (bi)directed graph
G′ = (V,

⋃

{u,v}∈E {(u,v),(v,u)}). Figure 8.1 illustrates the concept of a bidirected
graph. Most of the data structures presented also allow us torepresent multiple par-
allel edges and self-loops. We start with a survey of the operations that we may want
to support.

• Accessing associated information.Given a node or an edge, we frequently want
to access information associated with it, for example the weight of an edge or
the distance to a node. In many representations, nodes and edges are objects,
and we can store this information directly as a member of these objects. If not
otherwise mentioned, we assume thatV = 1..n so that information associated

1 The picture above shows a spider web (USFWS, seehttp://commons.wikimedia.
org/wiki/Image:Water_drops_on_spider_web.jpg).

FR
E

E
C

O
P

Y
168 8 Graph Representation

with nodes can be stored in arrays. When all else fails, we canalways store node
or edge information in a hash table. Hence, accesses can be implemented to run in
constant time. In the remainder of this book we abstract fromthe various options
for realizing access by using the data typesNodeArrayandEdgeArrayto indicate
array-like data structures that can be indexed by nodes and by edges, respectively.

• Navigation.Given a node, we may want to access its outgoing edges. It turns out
that this operation is at the heart of most graph algorithms.As we have seen in
the example above, we sometimes also want to know the incoming edges.

• Edge queries.Given a pair of nodes(u,v), we may want to know whether this
edge is in the graph. This can always be implemented using a hash table, but we
may want to have something even faster. A more specialized but important query
is to find thereverse edge(v,u) of a directed edge(u,v) ∈ E if it exists. This
operation can be implemented by storing additional pointers connecting edges
with their reversals.

• Construction, conversion and output.The representation most suitable for the
algorithmic problem at hand is not always the representation given initially. This
is not a big problem, since most graph representations can betranslated into each
other in linear time.

• Update.Sometimes we want to add or remove nodes or edges. For example, the
description of some algorithms is simplified if a node is added from which all
other nodes can be reached (e.g. Fig. 10.10).

8.1 Unordered Edge Sequences

Perhaps the simplest representation of a graph is as an unordered sequence of edges.
Each edge contains a pair of node indices and, possibly, associated information such
as an edge weight. Whether these node pairs represent directed or undirected edges is
merely a matter of interpretation. Sequence representation is often used for input and
output. It is easy to add edges or nodes in constant time. However, many other op-
erations, in particular navigation, take timeΘ(m), which is forbiddingly slow. Only
a few graph algorithms work well with the edge sequence representation; most al-
gorithms require easy access to the edges incident on any given node. In this case
the ordered representations discussed in the following sections are appropriate. In
Chap. 11, we shall see two minimum-spanning-tree algorithms: one works well with
an edge sequence representation and the other needs a more sophisticated data struc-
ture.

8.2 Adjacency Arrays – Static Graphs

To support easy access to the edges leaving any particular node, we can store the
edges leaving any node in an array. If no additional information is stored with the
edges, this array will just contain the indices of the targetnodes. If the graph isstatic,
i.e., does not change over time, we can concatenate all theselittle arrays into a single

FR
E

E
C

O
P

Y
8.2 Adjacency Arrays – Static Graphs 169

4

1

2

31

4

3

2

2

1
4

1
2

4
2

4
3

2
3

1
2 4 1 3 4 2 4 1 2 3

1

1

3 4

2 1

2

34

4

1

1 n

nn

m









0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0









Fig. 8.1. The first row shows an undirected graph and the corresponding bidirectedgraph.
Thesecond rowshows the adjacency array and adjacency list representations of this bidirected
graph. Thethird row shows the linked-edge-objects representation and the adjacency matrix

edge arrayE. An additional arrayV stores the starting positions of the subarrays,
i.e., for any nodev, V[v] is the index inE of the first edge out ofV. It is convenient
to add a dummy entryV[n+1] with V[n+1] = m+1. The edges out of any nodev
are then easily accessible asE[V[v]], . . . , E[V[v+ 1]−1]; the dummy entry ensures
that this also holds true for noden. Figure 8.1 shows an example.

The memory consumption for storing a directed graph using adjacency arrays is
n+ m+ Θ(1) words. This is even more compact than the 2m words needed for an
edge sequence representation.

Adjacency array representations can be generalized to store additional informa-
tion: we may store information associated with edges in separate arrays or within the
edge array. If we also need incoming edges, we may use additional arraysV ′ andE′

to store the reversed graph.

Exercise 8.1.Design a linear-time algorithm for converting an edge sequence repre-
sentation of a directed graph into an adjacency array representation. You should use

FR
E

E
C

O
P

Y
170 8 Graph Representation

only O(1) auxiliary space. Hint: view the problem as the task of sorting edges by
their source node and adapt the integer-sorting algorithm shown in Fig. 5.15.

8.3 Adjacency Lists – Dynamic Graphs

Edge arrays are a compact and efficient graph representation. Their main disadvan-
tage is that it is expensive to add or remove edges. For example, assume that we want
to insert a new edge(u,v). Even if there is room in the edge arrayE to accommodate
it, we still have to move the edges associated with nodesu+ 1 to n one position to
the right, which takes time O(m).

In Chap. 3, we learned how to implement dynamic sequences. Wecan use any
of the solutions presented there to produce a dynamic graph data structure. For each
nodev, we represent the sequenceEv of outgoing (or incoming, or outgoing and
incoming) edges by an unbounded array or by a (singly or doubly) linked list. We
inherit the advantages and disadvantages of the respectivesequence representations.
Unbounded arrays are more cache-efficient. Linked lists allow constant-time inser-
tion and deletion of edges at arbitrary positions. Most graphs arising in practice are
sparse in the sense that every node has only a few incident edges. Adjacency lists
for sparse graphs should be implemented without the dummy item introduced in
Sect. 3.1, because an additional item would waste considerable space. In the exam-
ple in Fig. 8.1, we show circularly linked lists.

Exercise 8.2.Suppose the edges adjacent to a nodeu are stored in an unbounded
arrayEu, and an edgee= (u,v) is specified by giving its position inEu. Explain how
to removee= (u,v) in constant amortized time. Hint: you donot have to maintain
the relative order of the other edges.

Exercise 8.3.Explain how to implement the algorithm for testing whether agraph is
acyclic discussed in Chap. 2.9 so that it runs in linear time,i.e., design an appropriate
graph representation and an algorithm using it efficiently.Hint: maintain a queue of
nodes with outdegree zero.

Bidirected graphs arise frequently. Undirected graphs arenaturally presented as
bidirected graphs, and some algorithms that operate on directed graphs need access
not only to outgoing edges but also to incoming edges. In these situations, we fre-
quently want to store the information associated with an undirected edge or a directed
edge and its reversal only once. Also, we may want to have easyaccess from an edge
to its reversal.

We shall describe two solutions. The first solution simply associates two addi-
tional pointers with every directed edge. One points to the reversal, and the other
points to the information associated with the edge.

The second solution has only one item for each undirected edge (or pair of di-
rected edges) and makes this item a member of two adjacency lists. So, the item for
an undirected edge{u,v} would be a member of listsEu andEv. If we want doubly

FR
E

E
C

O
P

Y
8.4 The Adjacency Matrix Representation 171

linked adjacency information, the edge object for any edge{u,v} stores four point-
ers: two are used for the doubly linked list representingEu, and two are used for the
doubly linked list representingEv. Any node stores a pointer to some edge incident
on it. Starting from it, all edges incident on the node can be traversed. The bottom
part of Fig. 8.1 gives an example. A small complication lies in the fact that finding
the other end of an edge now requires some work. Note that the edge object for an
edge{u,v} stores the endpoints in no particular order. Hence, when we explore the
edges out of a nodeu, we must inspect both endpoints and then choose the one which
is different fromu. An elegant alternative is to storeu⊕ v in the edge object [145].
An exclusive OR with either endpoint then yields the other endpoint. Also, this rep-
resentation saves space.

8.4 The Adjacency Matrix Representation

An n-node graph can be represented by ann×n adjacency matrix A. Ai j is 1 if (i, j)∈
E and 0 otherwise. Edge insertion or removal and edge queries work in constant time.
It takes time O(n) to obtain the edges entering or leaving a node. This is only efficient
for very dense graphs withm= Ω

(

n2
)

. The storage requirement isn2 bits. For very
dense graphs, this may be better than then+m+O(1) words required for adjacency
arrays. However, even for dense graphs, the advantage is small if additional edge
information is needed.

Exercise 8.4.Explain how to represent an undirected graph withn nodes and without
self-loops usingn(n−1)/2 bits.

Perhaps more important than actually storing the adjacencymatrix is the con-
ceptual link between graphs and linear algebra introduced by the adjacency matrix.
On the one hand, graph-theoretic problems can be solved using methods from linear
algebra. For example, ifC = Ak, thenCi j counts the number of paths fromi to j with
exactlyk edges.

Exercise 8.5.Explain how to store ann×n matrix A with m nonzero entries using
storage O(m+n) such that a matrix–vector multiplicationAx can be performed in
time O(m+n). Describe the multiplication algorithm. Expand your representation
so that products of the formxTA can also be computed in time O(m+n).

On the other hand, graph-theoretic concepts can be useful for solving problems
from linear algebra. For example, suppose we want to solve the matrix equationBx=
c, whereB is a symmetric matrix. Now consider the corresponding adjacency matrix
A whereAi j = 1 if and only if Bi j 6= 0. If an algorithm for computing connected
components finds that the undirected graph represented byA contains two distinct
connected components, this information can be used to reorder the rows and columns
of B such that we obtain an equivalent equation of the form

(

B1 0
0 B2

)(

x1

x2

)

=

(

c1

c2

)

.

FR
E

E
C

O
P

Y
172 8 Graph Representation

This equation can now be solved by solvingB1x1 = c1 andB2x2 = c2 separately. In
practice, the situation is more complicated, since we rarely have matrices whose cor-
responding graphs are disconnected. Still, more sophisticated graph-theoretic con-
cepts such as cuts can help to discover structure in the matrix which can then be
exploited in solving problems in linear algebra.

8.5 Implicit Representations

Many applications work with graphs of special structure. Frequently, this structure
can be exploited to obtain simpler and more efficient representations. We shall give
two examples.

Thegrid graph Gkℓ with node setV = [0..k−1]× [0..ℓ−1] and edge set

E =
{

((i, j),(i, j ′)) ∈V2 : | j − j ′| = 1
}

∪
{

((i, j),(i′, j)) ∈V2 : |i − i′| = 1
}

is completely defined by the two parametersk andℓ. Figure 8.2 showsG3,4. Edge
weights could be stored in two two-dimensional arrays, one for the vertical edges
and one for the horizontal edges.

An interval graphis defined by a set of intervals. For each interval, we have a
node in the graph, and two nodes are adjacent if the corresponding intervals overlap.

Fig. 8.2. The grid graphG34 (left) and
an interval graph with five nodes and six
edges (right)

Exercise 8.6 (representation of interval graphs).

(a) Show that for any set ofn intervals there is a set of intervals whose endpoints are
integers in[1..2n] and that defines the same graph.

(b) Devise an algorithm that decides whether the graph defined by a set ofn intervals
is connected. Hint: sort the endpoints of the intervals and then scan over the
endpoints in sorted order. Keep track of the number of intervals that have started
but not ended.

(c*) Devise a representation for interval graphs that needsO(n) space and supports
efficient navigation. Given an intervalI , you need to find all intervalsI ′ inter-
secting it;I ′ intersectsI if I contains an endpoint ofI ′ or I ⊆ I ′. How can you
find the former and the latter kinds of interval?

8.6 Implementation Notes

We have seen several representations of graphs in this chapter. They are suitable
for different sets of operations on graphs, and can be tuned further for maximum

FR
E

E
C

O
P

Y
8.6 Implementation Notes 173

performance in any particular application. The edge sequence representation is good
only in specialized situations. Adjacency matrices are good for rather dense graphs.
Adjacency lists are good if the graph changes frequently. Very often, some variant
of adjacency arrays is fastest. This may be true even if the graph changes, because
often there are only a few changes, or all changes happen in aninitialization phase
of a graph algorithm, or changes can be agglomerated into occasional rebuildings of
the graph, or changes can be simulated by building several related graphs.

There are many variants of the adjacency array representation. Information asso-
ciated with nodes and edges may be stored together with theseobjects or in separate
arrays. A rule of thumb is that information that is frequently accessed should be
stored with the nodes and edges. Rarely used data should be kept in separate arrays,
because otherwise it would often be moved to the cache without being used. How-
ever, there can be other, more complicated reasons why separate arrays may be faster.
For example, if both adjacency information and edge weightsare read but only the
weights are changed, then separate arrays may be faster because the amount of data
written back to the main memory is reduced.

Unfortunately, no graph representation is best for all purposes. How can one cope
with the zoo of graph representations? First, libraries such as LEDA and the Boost
graph library offer several different graph data types, andone of them may suit your
purposes. Second, if your application is not particularly time- or space-critical, sev-
eral representations might do and there is no need to devise acustom-built repre-
sentation for the particular application. Third, we recommend that graph algorithms
should be written in the style of generic programming [71]. The algorithms should
access the graph data structure only through a small set of operations, such as iterat-
ing over the edges out of a node, accessing information associated with an edge, and
proceeding to the target node of an edge. The interface can becaptured in an inter-
face description, and a graph algorithm can be run on any representation that realizes
the interface. In this way, one can experiment with different representations. Fourth,
if you have to build a custom representation for your application, make it available
to others.

8.6.1 C++

LEDA [131, 118, 145] offers a powerful graph data type that supports a large variety
of operations in constant time and is convenient to use, but is also space-consuming.
Therefore LEDA also implements several more space-efficient adjacency array rep-
resentations.

The Boost graph library [27, 119] emphasizes a strict separation of representa-
tion and interface. In particular, Boost graph algorithms run on any representation
that realizes the Boost interface. Boost also offers its owngraph representation class
adjacency_list. A large number of parameters allow one to choose between variants
of graphs (directed and undirected graphs and multigraphs2), types of navigation
available (in-edges, out-edges, . . .), and representations of vertex and edge sequences

2 Multigraphs allow multiple parallel edges.

FR
E

E
C

O
P

Y
174 8 Graph Representation

(arrays, linked lists, sorted sequences, . . .). However, itshould be noted that the array
representation uses a separate array for the edges adjacentto each vertex.

8.6.2 Java

JDSL [78] offers rich support for graphs injdsl.graph. It has a clear separation be-
tween interfaces, algorithms, and representation. It offers an adjacency list represen-
tation of graphs that supports directed and undirected edges.

8.7 Historical Notes and Further Findings

Special classes of graphs may result in additional requirements for their representa-
tion. An important example isplanar graphs– graphs that can be drawn in the plane
without edges crossing. Here, the ordering of the edges adjacent to a node should
be in counterclockwise order with respect to a planar drawing of the graph. In ad-
dition, the graph data structure should efficiently supportiterating over the edges
along afaceof the graph, a cycle that does not enclose any other node. LEDA offers
representations for planar graphs.

Recall thatbipartite graphsare special graphs where the node setV = L∪R
can be decomposed into two disjoint subsetsL andR such that the edges are only
between nodes inL andR. All representations discussed here also apply to bipartite
graphs. In addition, one may want to store the two sidesL andRof the graph.

Hypergraphs H= (V,E) are generalizations of graphs, where edges can connect
more than two nodes. Hypergraphs are conveniently represented as the correspond-
ing bipartite graphBH = (E∪V,{(e,v) : e∈ E,v∈V,v∈ e}).

Cayley graphsare an interesting example of implicitly defined graphs. Recall
that a setV is a group if it has an associative multiplication operation∗, a neutral
element, and a multiplicative inverse operation. TheCayley graph(V,E) with respect
to a setS⊆ V has the edge set{(u,u∗ s) : u∈V,s∈ S}. Cayley graphs are useful
because graph-theoretic concepts can be useful in group theory. On the other hand,
group theory yields concise definitions of many graphs with interesting properties.
For example, Cayley graphs have been proposed as interconnection networks for
parallel computers [12].

In this book, we have concentrated on convenient data structures forprocessing
graphs. There is also a lot of work onstoring graphs in a flexible, portable, space-
efficient way. Significant compression is possible if we havea priori information
about the graphs. For example, the edges of a triangulation of n points in the plane
can be represented with about 6n bits [42, 168].

