
FR
E

E
C

O
P

Y
6

Priority Queues

The company TMG markets tailor-made first-rate garments. Itorganizes marketing,
measurements, etc., but outsources the actual fabricationto independent tailors. The
company keeps 20% of the revenue. When the company was founded in the 19th
century, there were five subcontractors. Now it controls 15%of the world market
and there are thousands of subcontractors worldwide.

Your task is to assign orders to the subcontractors. The ruleis that an order is
assigned to the tailor who has so far (in the current year) been assigned the smallest
total value of orders. Your ancestors used a blackboard to keep track of the current
total value of orders for each tailor; in computer science terms, they kept a list of
values and spent linear time to find the correct tailor. The business has outgrown this
solution. Can you come up with a more scalable solution whereyou have to look
only at a small number of values to decide who will be assignedthe next order?

In the following year the rules are changed. In order to encourage timely delivery,
the orders are now assigned to the tailor with the smallest value of unfinishedorders,
i.e., whenever a finished order arrives, you have to deduct the value of the order from
the backlog of the tailor who executed it. Is your strategy for assigning orders flexible
enough to handle this efficiently?

Priority queuesare the data structure required for the problem above and for
many other applications. We start our discussion with the precise specification. Pri-
ority queues maintain a setM of Elements withKeys under the following operations:

• M.build({e1, . . . ,en}): M :={e1, . . . ,en}.
• M.insert(e): M :=M∪{e}.
• M.min: return minM.
• M.deleteMin: e:=minM; M :=M \ {e}; return e.

This is enough for the first part of our example. Each year, we build a new priority
queue containing anElementwith aKeyof zero for each contract tailor. To assign an
order, we delete the smallestElement, add the order value to itsKey, and reinsert it.
Section 6.1 presents a simple, efficient implementation of this basic functionality.

0 The photograph shows a queue at the Mao Mausoleum (V. Berger,see http://
commons.wikimedia.org/wiki/Image:Zhengyangmen01.jpg).

FR
E

E
C

O
P

Y
128 6 Priority Queues

Addressable priority queuesadditionally support operations on arbitrary ele-
ments addressed by an element handleh:

• insert: as before, but return a handle to the element inserted.
• remove(h): remove the element specified by the handleh.
• decreaseKey(h,k): decrease the key of the element specified by the handleh to k.
• M.merge(Q): M :=M∪Q; Q := /0.

In our example, the operationremovemight be helpful when a contractor is fired
because he/she delivers poor quality. Using this operationtogether withinsert, we
can also implement the “new contract rules”: when an order isdelivered, we remove
theElementfor the contractor who executed the order, subtract the value of the order
from its Keyvalue, and reinsert theElement. DecreaseKeystreamlines this process
to a single operation. In Sect. 6.2, we shall see that this is not just convenient but that
decreasing keys can be implemented more efficiently than arbitrary element updates.

Priority queues have many applications. For example, in Sect. 12.2, we shall
see that our introductory example can also be viewed as a greedy algorithm for
a machine-scheduling problem. Also, the rather naive selection-sort algorithm of
Sect. 5.1 can be implemented efficiently now: first, insert all elements into a priority
queue, and then repeatedly delete the smallest element and output it. A tuned version
of this idea is described in Sect. 6.1. The resultingheapsortalgorithm is popular
because it needs no additional space and is worst-case efficient.

In a discrete-event simulation, one has to maintain a set of pending events. Each
event happens at some scheduled point in time and creates zero or more new events
in the future. Pending events are kept in a priority queue. The main loop of the simu-
lation deletes the next event from the queue, executes it, and inserts newly generated
events into the priority queue. Note that the priorities (times) of the deleted elements
(simulated events) increase monotonically during the simulation. It turns out that
many applications of priority queues have this monotonicity property. Section 10.5
explains how to exploit monotonicity for integer keys.

Another application of monotone priority queues is thebest-first branch-and-
boundapproach to optimization described in Sect. 12.4. Here, theelements are par-
tial solutions of an optimization problem and the keys are optimistic estimates of
the obtainable solution quality. The algorithm repeatedlyremoves the best-looking
partial solution, refines it, and inserts zero or more new partial solutions.

We shall see two applications of addressable priority queues in the chapters on
graph algorithms. In both applications, the priority queuestores nodes of a graph. Di-
jkstra’s algorithm for computing shortest paths (Sect. 10.3) uses a monotone priority
queue where the keys are path lengths. The Jarník–Prim algorithm for computing
minimum spanning trees (Sect. 11.2) uses a (nonmonotone) priority queue where the
keys are the weights of edges connecting a node to a partial spanning tree. In both
algorithms, there can be adecreaseKeyoperation for each edge, whereas there is
at most oneinsert anddeleteMinfor each node. Observe that the number of edges
may be much larger than the number of nodes, and hence the implementation of
decreaseKeydeserves special attention.

FR
E

E
C

O
P

Y
6.1 Binary Heaps 129

Exercise 6.1. Show how to implement bounded nonaddressable priority queues us-
ing arrays. The maximal size of the queue isw and when the queue has a sizen, the
first n entries of the array are used. Compare the complexity of the queue operations
for two implementations: one by unsorted arrays and one by sorted arrays.

Exercise 6.2. Show how to implement addressable priority queues using doubly
linked lists. Each list item represents an element in the queue, and a handle is a
handle of a list item. Compare the complexity of the queue operations for two imple-
mentations: one by sorted lists and one by unsorted lists.

6.1 Binary Heaps

Heaps are a simple and efficient implementation of nonaddressable bounded priority
queues [208]. They can be made unbounded in the same way as bounded arrays can
be made unbounded (see Sect. 3.2). Heaps can also be made addressable, but we
shall see better addressable queues in later sections.

a

c g

hpdr

zj sw q

a c g hpdr zj sw q

10 11 12 13 1310 11 12

a

c

hdr

zj sw q p

g

b

a

c g

hpdr

zj sw q

hpr

zj sw

g

c

d

q

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

h:

j :

insert(b)

deleteMin

Fig. 6.1. The top part shows a heap withn = 12 elements stored in an arrayh with w = 13
entries. The root corresponds to index 1. The children of theroot correspond to indices 2 and
3. The children of nodei have indices 2i and 2i + 1 (if they exist). The parent of a nodei,
i ≥ 2, has index⌊i/2⌋. The elements stored in this implicitly defined tree fulfill the invariant
that parents are no larger than their children, i.e., the tree is heap-ordered. Theleft part shows
the effect of insertingb. The thick edges mark a path from the rightmost leaf to the root. The
new elementb is moved up this path until its parent is smaller. The remaining elements on
the path are moved down to make room forb. Theright part shows the effect of deleting the
minimum. The thick edges mark the pathp that starts at the root and always proceeds to the
child with the smallerKey. The elementq is provisionally moved to the root and then moves
down p until its successors are larger. The remaining elements move up to make room forq

FR
E

E
C

O
P

Y
130 6 Priority Queues

Class BinaryHeapPQ(w : N) of Element
h : Array [1..w] of Element // Theheap his
n = 0 :N // initially emptyand has the
invariant ∀ j ∈ 2..n : h[⌊ j/2⌋] ≤ h[j] // heap propertywhich implies that
Function min assert n > 0 ; return h[1] // theroot is theminimum.

Fig. 6.2. A class for a priority queue based on binary heaps whose size is bounded byw

We use an arrayh[1..w] that stores the elements of the queue. The firstn entries
of the array are used. The array isheap-ordered, i.e.,

for j with 2≤ j ≤ n: h[⌊ j/2⌋] ≤ h[j].

What does "heap-ordered" mean? The key to understanding this definition is a bijec-
tion between positive integers and the nodes of a complete binary tree, as illustrated
in Fig. 6.1. In a heap the minimum element is stored in the root(= array position 1).
Thus min takes time O(1). Creating an empty heap with space forw elements also
takes constant time, as it only needs to allocate an array of size w. Figure 6.2 gives
pseudocode for this basic setup.

The minimum of a heap is stored inh[1] and hence can be found in constant time;
this is the same as for a sorted array. However, the heap property is much less restric-
tive than the property of being sorted. For example, there isonly one sorted version
of the set{1,2,3}, but both〈1,2,3〉 and〈1,3,2〉 are legal heap representations.

Exercise 6.3. Give all representations of{1,2,3,4} as a heap.

We shall next see that the increased flexibility permits efficient implementations
of insertanddeleteMin. We choose a description which is simple and can be easily
proven correct. Section 6.4 gives some hints toward a more efficient implementation.
An insertputs a new elemente tentatively at the end of the heaph, i.e., intoh[n], and
then movese to an appropriate position on the path from leafh[n] to the root:

Procedure insert(e : Element)
assert n < w
n++; h[n] :=e
siftUp(n)

HeresiftUp(s) moves the contents of nodes toward the root until the heap property
holds (see. Fig. 6.1).

Procedure siftUp(i : N)
assert the heap property holds except maybe at positioni
if i = 1∨h[⌊i/2⌋] ≤ h[i] then return
assert the heap property holds except for positioni
swap(h[i],h[⌊i/2⌋])
assert the heap property holds except maybe for position⌊i/2⌋
siftUp(⌊i/2⌋)

FR
E

E
C

O
P

Y
6.1 Binary Heaps 131

Correctness follows from the invariants stated.

Exercise 6.4. Show that the running time ofsiftUp(n) is O(logn) and hence aninsert
takes time O(logn).

A deleteMinreturns the contents of the root and replaces them by the contents of
noden. Sinceh[n] might be larger thanh[1] or h[2], this manipulation may violate the
heap property at position 1 or 2. This possible violation is repaired usingsiftDown:

Function deleteMin: Element
assert n > 0
result = h[1] : Element
h[1] :=h[n]; n--
siftDown(1)
return result

The proceduresiftDown(1) moves the new contents of the root down the tree until
the heap property holds. More precisely, consider the pathp that starts at the root
and always proceeds to the child with the smaller key (see Fig. 6.1); in the case of
equal keys, the choice is arbitrary. We extend the path untilall children (there may
be zero, one, or two) have a key no larger thanh[1]. We puth[1] into this position
and move all elements on pathp up by one position. In this way, the heap property is
restored. This strategy is most easily formulated as a recursive procedure. A call of
the following proceduresiftDown(i) repairs the heap property in the subtree rooted
at i, assuming that it holds already for the subtrees rooted at 2i and 2i +1; the heap
property holds in the subtree rooted ati if we haveh[⌊ j/2⌋] ≤ h[j] for all proper
descendantsj of i:

Procedure siftDown(i : N)
assert the heap property holds for the trees rooted atj = 2i and j = 2i +1
if 2i ≤ n then // i is not a leaf

if 2i +1> n∨h[2i]≤ h[2i +1] then m:=2i else m:=2i +1
assert the sibling ofmdoes not exist or it has a larger key thanm
if h[i] > h[m] then // the heap property is violated

swap(h[i],h[m])
siftDown(m)

assert the heap property holds for the tree rooted ati

Exercise 6.5. Our current implementation ofsiftDownneeds about 2 logn element
comparisons. Show how to reduce this to logn+ O(log logn). Hint: determine the
pathp first and then perform a binary search on this path to find the proper position
for h[1]. Section 6.5 has more on variants ofsiftDown.

We can obviously build a heap fromn elements by inserting them one after the
other in O(nlogn) total time. Interestingly, we can do better by establishingthe heap
property in a bottom-up fashion:siftDownallows us to establish the heap property
for a subtree of heightk+ 1 provided the heap property holds for its subtrees of
heightk. The following exercise asks you to work out the details of this idea.

FR
E

E
C

O
P

Y
132 6 Priority Queues

Exercise 6.6 (buildHeap). Assume that you are given an arbitrary arrayh[1..n] and
want to establish the heap property on it by permuting its entries. Consider two pro-
cedures for achieving this:

Procedure buildHeapBackwards
for i := ⌊n/2⌋ downto 1 do siftDown(i)

Procedure buildHeapRecursive(i : N)
if 4i ≤ n then

buildHeapRecursive(2i)
buildHeapRecursive(2i +1)

siftDown(i)

(a) Show that bothbuildHeapBackwardsandbuildHeapRecursive(1) establish the
heap property everywhere.

(b) Implement both algorithms efficiently and compare theirrunning times for ran-
dom integers andn∈

{

10i : 2≤ i ≤ 8
}

. It will be important how efficiently you
implementbuildHeapRecursive. In particular, it might make sense to unravel the
recursion for small subtrees.

*(c) For largen, the main difference between the two algorithms is in memoryhierar-
chy effects. Analyze the number of I/O operations required by the two algorithms
in the external-memory model described at the end of Sect. 2.2. In particular,
show that if the block size isB and the fast memory has sizeM = Ω(BlogB),
thenbuildHeapRecursiveneeds only O(n/B) I/O operations.

The following theorem summarizes our results on binary heaps.

Theorem 6.1. The heap implementation of nonaddressable priority queuesrealizes
creating an empty heap and finding the minimum element in constant time, deleteMin
and insert in logarithmic timeO(logn), and build in linear time.

Proof. The binary tree represented by a heap ofn elements has a height ofk =
⌊logn⌋. insertanddeleteMinexplore one root-to-leaf path and hence have logarith-
mic running time; min returns the contents of the root and hence takes constant time.
Creating an empty heap amounts to allocating an array and therefore takes constant
time. build calls siftDown for at most 2ℓ nodes of depthℓ. Such a call takes time
O(k− ℓ). Thus total the time is

O

(

∑
0≤ℓ<k

2ℓ(k− ℓ)

)

= O

(

2k ∑
0≤ℓ<k

k− ℓ

2k−ℓ

)

= O

(

2k ∑
j≥1

j
2 j

)

= O(n) .

The last equality uses (A.14). ⊓⊔

Heaps are the basis ofheapsort. We firstbuild a heap from the elements and then
repeatedly performdeleteMin. Before thei-th deleteMinoperation, thei-th smallest
element is stored at the rooth[1]. We swaph[1] andh[n− i + 1] and sift the new
root down to its appropriate position. At the end,h stores the elements sorted in

FR
E

E
C

O
P

Y
6.2 Addressable Priority Queues 133

decreasing order. Of course, we can also sort in increasing order by using amax-
priority queue, i.e., a data structure supporting the operations ofinsertand of deleting
the maximum.

Heaps do not immediately implement the data type addressable priority queue,
since elements are moved around in the arrayh during insertion and deletion. Thus
the array indices cannot be used as handles.

Exercise 6.7 (addressable binary heaps). Extend heaps to an implementation of
addressable priority queues. How many additional pointersper element do you need?
There is a solution with two additional pointers per element.

*Exercise 6.8 (bulk insertion). Design an algorithm for insertingk new elements
into ann-element heap. Give an algorithm that runs in time O(k+ logn). Hint: use a
bottom-up approach similar to that for heap construction.

6.2 Addressable Priority Queues

Binary heaps have a rather rigid structure. Alln elements are arranged into a single
binary tree of height⌊logn⌋. In order to obtain faster implementations of the oper-
ationsinsert, decreaseKey, remove, andmerge, we now look at structures which are
more flexible. The single, complete binary tree is replaced by a collection of trees
(i.e., a forest) with arbitrary shape. Each tree is stillheap-ordered, i.e., no child is
smaller than its parent. In other words, the sequence of keysalong any root-to-leaf
path is nondecreasing. Figure 6.4 shows a heap-ordered forest. Furthermore, the el-
ements of the queue are now stored inheap itemsthat have a persistent location in
memory. Hence, pointers to heap items can serve ashandles to priority queue ele-
ments. The tree structure is explicitly defined using pointers between items.

We shall discuss several variants of addressable priority queues. We start with
the common principles underlying all of them. Figure 6.3 summarizes the common-
alities.

In order to keep track of the current minimum, we maintain thehandle to the
root containing it. We useminPtr to denote this handle. The forest is manipulated
using three simple operations: adding a new tree (and keeping minPtr up to date),
combining two trees into a single one, and cutting out a subtree, making it a tree of
its own.

An insert adds a new single-node tree to the forest. So a sequence ofn inserts
into an initially empty heap will simply createn single-node trees. The cost of an
insert is clearly O(1).

A deleteMinoperation removes the node indicated byminPtr. This turns all chil-
dren of the removed node into roots. We then scan the set of roots (old and new)
to find the new minimum, a potentially very costly process. Wealso perform some
rebalancing, i.e., we combine trees into larger ones. The details of this process dis-
tinguish different kinds of addressable priority queue andare the key to efficiency.

We turn now todecreaseKey(h,k) which decreases the key value at a handleh
to k. Of course,k must not be larger than the old key stored withh. Decreasing the

FR
E

E
C

O
P

Y
134 6 Priority Queues

Class Handle =Pointer to PQItem

Class AddressablePQ
minPtr : Handle // root that stores the minimum
roots : Setof Handle // pointers to tree roots

roots
minPtr

Function min return element stored atminPtr

Procedure link(a,b : Handle)
assert a≤ b
removeb from roots
makea the parent ofb //

b a a

b

Procedure combine(a,b : Handle)
assert a andb are tree roots
if a≤ b then link(a,b) else link(b,a)

Procedure newTree(h : Handle)
roots:= roots∪{h}
if ∗h < min then minPtr:=h

Procedure cut(h : Handle)
remove the subtree rooted ath from its tree //

h

h
newTree(h)

Function insert(e : Element) : Handle
i:=a Handlefor a newPQItemstoringe
newTree(i)
return i

Function deleteMin: Element
e:= theElementstored inminPtr
foreach child h of the root atminPtr do cut(h) //

e

dispose minPtr
perform some rebalancing and updateminPtr // usescombine
return e

Procedure decreaseKey(h : Handle, k : Key)
change the key ofh to k
if h is not a rootthen

cut(h); possibly perform some rebalancing

Procedure remove(h : Handle) decreaseKey(h,−∞); deleteMin

Procedure merge(o : AddressablePQ)
if ∗minPtr> ∗(o.minPtr) then minPtr:=o.minPtr
roots:= roots∪o.roots
o.roots:= /0; possibly perform some rebalancing

Fig. 6.3. Addressable priority queues

1 4

785 3

0

Fig. 6.4. A heap-ordered forest representing the set{0,1,3,4,5,7,8}

FR
E

E
C

O
P

Y
6.2 Addressable Priority Queues 135

key associated withh may destroy the heap property becauseh may now be smaller
than its parent. In order to maintain the heap property, we cut the subtree rooted at
h and turnh into a root. This sounds simple enough, but may create highlyskewed
trees. Therefore, some variants of addressable priority queues perform additional
operations to keep the trees in shape.

The remaining operations are easy. We canremovean item from the queue by
first decreasing its key so that it becomes the minimum item inthe queue, and then
perform adeleteMin. To merge a queueo into another queue we compute the union of
rootsando.roots. To updateminPtr, it suffices to compare the minima of the merged
queues. If the root sets are represented by linked lists, andno additional balancing is
done, a merge needs only constant time.

In the remainder of this section we shall discuss particularimplementations of
addressable priority queues.

6.2.1 Pairing Heaps

Pairing heaps [67] use a very simple technique for rebalancing. Pairing heaps are
efficient in practice; however a full theoretical analysis is missing. They rebalance
only in deleteMin. If 〈r1, . . . , rk〉 is the sequence of root nodes stored inroots, then
deleteMin combines r1 with r2, r3 with r4, etc., i.e., therootsarepaired. Figure 6.5
gives an example.

cab f ed g

b d

a

f

gec
roots roots

≤ ≥≥

Fig. 6.5. ThedeleteMinoperation for pairing heaps combines pairs of root nodes

Exercise 6.9 (three-pointer items). Explain how to implement pairing heaps using
three pointers per heap itemi: one to the oldest child (i.e., the child linked first toi),
one to the next younger sibling (if any), and one to the next older sibling. If there is
no older sibling, the third pointer goes to the parent. Figure 6.8 gives an example.

*Exercise 6.10 (two-pointer items). Explain how to implement pairing heaps using
two pointers per heap item: one to the oldest child and one to next younger sibling.
If there is no younger sibling, the second pointer goes to theparent. Figure 6.8 gives
an example.

6.2.2 *Fibonacci Heaps

Fibonacci heaps [68] use more intensive balancing operations than do pairing heaps.
This paves the way to a theoretical analysis. In particular,we obtain logarithmic

FR
E

E
C

O
P

Y
136 6 Priority Queues

feg

roots
ab

b
a

c

g d ab

b

a

f

dc

b

dcgedc

c

f

e a

Fig. 6.6. An example of the development of the bucket array during execution of deleteMin
for a Fibonacci heap. The arrows indicate the roots scanned.Note that scanningd leads to a
cascade of three combine operations

amortized time forremoveanddeleteMinand worst-case constant time for all other
operations.

Each item of a Fibonacci heap stores four pointers that identify its parent, one
child, and two siblings (see Fig. 6.8). The children of each node form a doubly linked
circular list using the sibling pointers. The sibling pointers of the root nodes can be
used to representroots in a similar way. Parent pointers of roots and child pointers
of leaf nodes have a special value, for example, a null pointer.

In addition, every heap item contains a fieldrank. The rank of an item is the
number of its children. In Fibonacci heaps,deleteMinlinks roots of equal rankr.
The surviving root will then obtain a rank ofr +1. An efficient method to combine
trees of equal rank is as follows. LetmaxRankbe an upper bound on the maximal
rank of any node. We shall prove below thatmaxRankis logarithmic inn. Maintain a
set of buckets, initially empty and numbered from 0 tomaxRank. Then scan the list
of old and new roots. When scanning a root of ranki, inspect thei-th bucket. If the
i-th bucket is empty, then put the root there. If the bucket is nonempty, then combine
the two trees into one. This empties thei-th bucket and creates a root of ranki + 1.
Treat this root in the same way, i.e., try to throw it into thei + 1-th bucket. If it is
occupied, combine When all roots have been processed inthis way, we have a
collection of trees whose roots have pairwise distinct ranks (see Figure 6.6).

A deleteMincan be very expensive if there are many roots. For example, a
deleteMinfollowing n insertions has a costΩ(n). However, in an amortized sense,
the cost ofdeleteminis O(maxRank). The reader must be familiar with the technique
of amortized analysis (see Sect. 3.3) before proceeding further. For the amortized
analysis, we postulate that each root holds one token. Tokens pay for a constant
amount of computing time.

Lemma 6.2. The amortized complexity of deleteMin isO(maxRank).

Proof. A deleteMinfirst calls newTreeat mostmaxRanktimes (since the degree
of the old minimum is bounded bymaxRank) and then initializes an array of size
maxRank. Thus its running time is O(maxRank) and it needs to createmaxRanknew
tokens. The remaining time is proportional to the number ofcombineoperations
performed. Eachcombineturns a root into a nonroot and is paid for by the token
associated with the node turning into a nonroot. ⊓⊔

FR
E

E
C

O
P

Y
6.2 Addressable Priority Queues 137

How can we guarantee thatmaxRankstays small? Let us consider a simple sit-
uation first. Suppose that we perform a sequence of insertions followed by a one
deleteMin. In this situation, we start with a certain number of single-node trees and
all trees formed by combining arebinomial trees, as shown in Fig. 6.7. The binomial
treeB0 consists of a single node, and the binomial treeBi+1 is obtained by combin-
ing two copies ofBi . This implies that the root ofBi has ranki and thatBi contains
exactly 2i nodes. Thus the rank of a binomial tree is logarithmic in the size of the
tree.

B0

B1

B2

B3

B4 B5

Fig. 6.7. The binomial trees of ranks zero to five

B3

binomial heaps
pairing heaps

3 pointers:

Fibonacci heaps
4 pointers:

Exercise 6.10
2 pointers:,

Fig. 6.8. Three ways to represent trees of nonuniform degree. The binomial tree of rank three,
B3, is used as an example

Unfortunately,decreaseKeymay destroy the nice structure of binomial trees.
Suppose an itemv is cut out. We now have to decrease the rank of its parentw. The
problem is that the size of the subtrees rooted at the ancestors of w has decreased
but their rank has not changed, and hence we can no longer claim that the size of
a tree stays exponential in the rank of its root. Therefore, we have to perform some
rebalancing to keep the trees in shape. An old solution [202]is to keep all trees in
the heap binomial. However, this causes logarithmic cost for a decreaseKey.

*Exercise 6.11 (binomial heaps). Work out the details of this idea. Hint: cut the
following links. For each ancestor ofv and forv itself, cut the link to its parent. For

FR
E

E
C

O
P

Y
138 6 Priority Queues

✖

d
e

cr
e

a
se

K
e

y(
,6

)

✖

✖

✖

d
e

cr
e

a
se

K
e

y(
,4

)

d
e

cr
e

a
se

K
e

y(
,2

)

1

3

5

7

9 8

3

5

7

9

6

3

7 5 6 5 27141461

Fig. 6.9. An example of cascading cuts. Marks are drawn as crosses. Note that roots are never
marked

each sibling ofv of rank higher thanv, cut the link to its parent. Argue that the trees
stay binomial and that the cost ofdecreaseKeyis logarithmic.

Fibonacci heaps allow the trees to go out of shape but in a controlled way. The
idea is surprisingly simple and was inspired by the amortized analysis of binary
counters (see Sect. 3.2.3). We introduce an additional flag for each node. A node may
be marked or not. Roots are never marked. In particular, whennewTree(h) is called
in deleteMin, it removes the mark fromh (if any). Thus whencombinecombines two
trees into one, neither node is marked.

When a nonroot itemx loses a child becausedecreaseKeyhas been applied to
the child,x is marked; this assumes thatx is not already marked. Otherwise, when
x was already marked, we cutx, remove the mark fromx, and attempt to markx’s
parent. Ifx’s parent is already marked, then This technique is calledcascading
cuts. In other words, suppose that we applydecreaseKeyto an itemv and that the
k nearest ancestors ofv are marked. We turnv and thek nearest ancestors ofv into
roots, unmark them, and mark thek+ 1-th nearest ancestor ofv (if it is not a root).
Figure 6.9 gives an example. Observe the similarity to carrypropagation in binary
addition.

For the amortized analysis, we postulate that each marked node holds two tokens
and each root holds one token. Please check that this assumption does not invalidate
the proof of Lemma 6.2.

Lemma 6.3. The amortized complexity of decreaseKey is constant.

Proof. Assume that we decrease the key of itemv and that thek nearest ancestors of
v are marked. Here,k≥ 0. The running time of the operation is O(1+k). Each of the
k marked ancestors carries two tokens, i.e., we have a total of2k tokens available.
We createk+1 new roots and need one token for each of them. Also, we mark one
unmarked node and need two tokens for it. Thus we need a total of k+ 3 tokens.
In other words,k− 3 tokens are freed. They pay for all but O(1) of the cost of
decreaseKey. Thus the amortized cost ofdecreaseKeyis constant. ⊓⊔

How do cascading cuts affect the size of trees? We shall show that it stays ex-
ponential in the rank of the root. In order to do so, we need some notation. Recall

FR
E

E
C

O
P

Y
6.3 *External Memory 139

the sequence 0, 1, 1, 2, 3, 5, 8, . . . of Fibonacci numbers. These are defined by the
recurrenceF0 = 0, F1 = 1, andFi = Fi−1 + Fi−2 for i ≥ 2. It is well known that
Fi+1 ≥ ((1+

√
5)/2)i ≥ 1.618i for all i ≥ 0.

Exercise 6.12. Prove thatFi+2 ≥ ((1+
√

5)/2)i ≥ 1.618i for all i ≥ 0 by induction.

Lemma 6.4. Let v be any item in a Fibonacci heap and let i be the rank of v. The
subtree rooted at v then contains at least Fi+2 nodes. In a Fibonacci heap with n
items, all ranks are bounded by1.4404logn.

Proof. Consider an arbitrary itemv of rank i. Order the children ofv by the time at
which they were made children ofv. Let wj be the j-th child, 1≤ j ≤ i. Whenwj

was made a child ofv, both nodes had the same rank. Also, since at least the nodes
w1, . . . ,wj−1 were children ofv at that time, the rank ofv was at leastj −1 then. The
rank of wj has decreased by at most 1 since then, because otherwisewj would no
longer be a child ofv. Thus the current rank ofwj is at leastj −2.

We can now set up a recurrence for the minimal numberSi of nodes in a tree
whose root has ranki. Clearly,S0 = 1, S1 = 2, andSi ≥ 2+ S0 + S1 + · · ·+ Si−2.
The latter inequality follows from the fact that forj ≥ 2, the number of nodes in
the subtree with rootwj is at leastSj−2, and that we can also count the nodesv and
w1. The recurrence above (with = instead of≥) generates the sequence 1, 2, 3, 5, 8,
. . . which is identical to the Fibonacci sequence (minus its first two elements).

Let us verify this by induction. LetT0 = 1, T1 = 2, andTi = 2+ T0 + · · ·+ Ti−2

for i ≥ 2. Then, fori ≥ 2, Ti+1−Ti = 2+T0+ · · ·+Ti−1−2−T0−·· ·−Ti−2 = Ti−1,
i.e.,Ti+1 = Ti +Ti−1. This provesTi = Fi+2.

For the second claim, we observe thatFi+2 ≤ n implies i · log((1+
√

5)/2) ≤
logn, which in turn impliesi ≤ 1.4404logn. ⊓⊔

This concludes our treatment of Fibonacci heaps. We have shown the following
result.

Theorem 6.5. The following time bounds hold for Fibonacci heaps: min, insert, and
merge take worst-case constant time; decreaseKey takes amortized constant time,
and remove and deleteMin take an amortized time logarithmicin the size of the
queue.

Exercise 6.13. Describe a variant of Fibonacci heaps where all roots have distinct
ranks.

6.3 *External Memory

We now go back to nonaddressable priority queues and consider their cache effi-
ciency and I/O efficiency. A weakness of binary heaps is that thesiftDownoperation
goes down the tree in an unpredictable fashion. This leads tomany cache faults and
makes binary heaps prohibitively slow when they do not fit into the main memory.

FR
E

E
C

O
P

Y
140 6 Priority Queues

We now outline a data structure for (nonadressable) priority queues with more regu-
lar memory accesses. It is also a good example of a generally useful design principle:
construction of a data structure out of simpler, known components and algorithms.

In this case, the components are internal-memory priority queues, sorting, and
multiway merging (see also Sect. 5.7.1). Figure 6.10 depicts the basic design. The
data structure consists of two priority queuesQ andQ′ (e.g., binary heaps) andk
sorted sequencesS1, . . . , Sk. Each element of the priority queue is stored either in
the insertion queue Q, in thedeletion queue Q′, or in one of the sorted sequences.
The size ofQ is limited to a parameterm. Thedeletion queue Q′ stores the small-
est element of each sequence, together with the index of the sequence holding the
element.

New elements are inserted into the insertion queue. If the insertion queue is full,
it is first emptied. In this case, its elements form a new sorted sequence:

Procedure insert(e : Element)
if |Q| = m then

k++; Sk :=sort(Q); Q := /0; Q′.insert((Sk.popFront,k))
Q.insert(e)

The minimum is stored either inQ or in Q′. If the minimum is inQ′ and comes
from sequenceSi , the next largest element ofSi is inserted intoQ′:

Function deleteMin
if minQ≤ minQ′ then e:=Q.deleteMin // assume min /0= ∞
else (e, i) :=Q′.deleteMin

if Si 6= 〈〉 then Q′.insert((Si .popFront, i))
return e

It remains to explain how the ingredients of our data structure are mapped to the
memory hierarchy. The queuesQ andQ′ are stored in internal memory. The size
boundm for Q should be a constant fraction of the internal-memory sizeM and a
multiple of the block sizeB. The sequencesSi are largely kept externally. Initially,
only theB smallest elements ofSi are kept in an internal-memory bufferbi. When
the last element ofbi is removed, the nextB elements ofSi are loaded. Note that we
are effectively merging the sequencesSi . This is similar to our multiway merging

...

S1 S2 Sk

Q′

Q

B m

ex
te

rn
al

so
rt

insert

min

Fig. 6.10. Schematic view of an external-memory priority queue

FR
E

E
C

O
P

Y
6.4 Implementation Notes 141

algorithm described in Sect. 5.7.1. Each inserted element is written to disk at most
once and fetched back to internal memory at most once. Since all disk accesses are
in units of at least a full block, the I/O requirement of our algorithm is at mostn/B
for n queue operations.

Our total requirement for internal memory is at mostm+kB+2k. This is below
the total fast-memory sizeM if m = M/2 andk ≤ ⌊(M/2−2k)/B⌋ ≈ M/(2B). If
there are many insertions, the internal memory may eventually overflow. However,
the earliest this can happen is afterm(1+ ⌊(M/2−2k)/B⌋) ≈ M2/(4B) insertions.
For example, if we have 1 Gbyte of main memory, 8-byte elements, and 512 Kbyte
disk blocks, we haveM = 227 andB = 216 (measured in elements). We can then
perform about 236 insertions – enough for 128 Gbyte of data. Similarly to external
mergesort, we can handle larger amounts of data by performing multiple phases of
multiway merging (see, [31, 164]). The data structure becomes considerably more
complicated, but it turns out that the I/O requirement forn insertions and deletions
is about the same as for sortingn elements. An implementation of this idea is two
to three times faster than binary heaps for the hierarchy between cache and main
memory [164]. There are also implementations for external memory [48].

6.4 Implementation Notes

There are various places wheresentinels(see Chap. 3) can be used to simplify or
(slightly) accelerate the implementation of priority queues. Since sentinels may re-
quire additional knowledge about key values, this could make a reusable implemen-
tation more difficult, however.

• If h[0] stores aKeyno larger than anyKeyever inserted into a binary heap, then
siftUpneed not treat the casei = 1 in a special way.

• If h[n+1] stores aKeyno smaller than anyKeyever inserted into a binary heap,
thensiftDownneed not treat the case 2i + 1 > n in a special way. If such large
keys are stored inh[n+1..2n+1], then the case 2i > n can also be eliminated.

• Addressable priority queues can use a special dummy item rather than a null
pointer.

For simplicity we have formulated the operationssiftDownandsiftUp for binary
heaps using recursion. It might be a little faster to implement them iteratively instead.
Similarly, theswapoperations could be replaced by unidirectional move operations
thus halving the number of memory accesses.

Exercise 6.14. Give iterative versions ofsiftDownandsiftUp. Also replace theswap
operations.

Some compilers do the recursion elimination for you.
As for sequences, memory management for items of addressable priority queues

can be critical for performance. Often, a particular application may be able to do this
more efficiently than a general-purpose library. For example, many graph algorithms
use a priority queue of nodes. In this case, items can be incorporated into nodes.

FR
E

E
C

O
P

Y
142 6 Priority Queues

There are priority queues that work efficiently for integer keys. It should be noted
that these queues can also be used for floating-point numbers. Indeed, the IEEE
floating-point standard has the interesting property that for any valid floating-point
numbersa andb, a ≤ b if and only if bits(a) ≤ bits(b), wherebits(x) denotes the
reinterpretation ofx as an unsigned integer.

6.4.1 C++

The STL classpriority_queueoffers nonaddressable priority queues implemented
using binary heaps. The external-memory library STXXL [48]offers an external-
memory priority queue. LEDA [118] implements a wide varietyof addressable pri-
ority queues, including pairing heaps and Fibonacci heaps.

6.4.2 Java

The classjava.util.PriorityQueuesupports addressable priority queues to the extent
that removeis implemented. However,decreaseKeyandmergeare not supported.
Also, it seems that the current implementation ofremoveneeds timeΘ(n)! JDSL [78]
offers an addressable priority queuejdsl.core.api.PriorityQueue, which is currently
implemented as a binary heap.

6.5 Historical Notes and Further Findings

There is an interesting Internet survey1 of priority queues. It lists the following appli-
cations: (shortest-) path planning (see Chap. 10), discrete-event simulation, coding
and compression, scheduling in operating systems, computing maximum flows, and
branch-and-bound (see Sect. 12.4).

In Sect. 6.1 we saw an implementation ofdeleteMinby top-down search that
needs about 2 logn element comparisons, and a variant using binary search thatneeds
only logn+O(log logn) element comparisons. The latter is mostly of theoretical in-
terest. Interestingly, a very simple “bottom-up” algorithm can be even better: The old
minimum is removed and the resulting hole is sifted down all the way to the bottom
of the heap. Only then, the rightmost element fills the hole and is subsequently sifted
up. When used for sorting, the resultingBottom-up heapsortrequires3

2nlogn+O(n)
comparisons in the worst case andnlogn+O(1) in the average case [204, 61, 169].
While bottom-up heapsort is simple and practical, our own experiments indicate that
it is not faster than the usual top-down variant (for integerkeys). This surprised
us. The explanation might be that the outcomes of the comparisons saved by the
bottom-up variant are easy to predict. Modern hardware executes such predictable
comparisons very efficiently (see [167] for more discussion).

The recursivebuildHeap routine in Exercise 6.6 is an example of acache-
oblivious algorithm[69]. This algorithm is efficient in the external-memory model
even though it does not explicitly use the block size or cachesize.

1 http://www.leekillough.com/heaps/survey_results.html

FR
E

E
C

O
P

Y
6.5 Historical Notes and Further Findings 143

Pairing heaps [67] have constant amortized complexity forinsertandmerge[96]
and logarithmic amortized complexity fordeleteMin. The best analysis is that due to
Pettie [154]. Fredman [65] has given operation sequences consisting of O(n) inser-
tions anddeleteMins and O(nlogn) decreaseKeys that require timeΩ(nlognloglogn)
for a family of addressable priority queues that includes all previously proposed vari-
ants of pairing heaps.

The family of addressable priority queues is large. Vuillemin [202] introduced
binomial heaps, and Fredman and Tarjan [68] invented Fibonacci heaps. Høyer [94]
described additional balancing operations that are akin tothe operations used for
search trees. One such operation yieldsthin heaps[103], which have performance
guarantees similar to Fibonacci heaps and do without parentpointers and mark bits.
It is likely that thin heaps are faster in practice than Fibonacci heaps. There are
also priority queues with worst-case bounds asymptotically as good as the amortized
bounds that we have seen for Fibonacci heaps [30]. The basic idea is to tolerate
violations of the heap property and to continuously invest some work in reducing
these violations. Another interesting variant isfat heaps[103].

Many applications need priority queues for integer keys only. For this special
case, there are more efficient priority queues. The best theoretical bounds so far are
constant time fordecreaseKeyand insert and O(log logn) time for deleteMin[193,
136]. Using randomization, the time bound can even be reduced to O

(√
log logn

)

[85]. The algorithms are fairly complex. However, integer priority queues that also
have themonotonicity propertycan be simple and practical. Section 10.3 gives exam-
ples.Calendar queues[33] are popular in the discrete-event simulation community.
These are a variant of thebucket queuesdescribed in Sect. 10.5.1.

FR
E

E
C

O
P

Y

