the actual fabric&tiodependent tailors. The
. When the company was doiantie 19th
rs. Now it controls 1&f%he world market
rs worldwide.

century, there were
and there are thousa

total value of orders. Your lackboard apkeack of the current
i ter sciencents, they kept a list of

solution wiyere have to look
only at a small number of values to d e assighechext order?

In the following year the rules are r to errege timely delivery,
the orders are now assigned to the ta lektevaf unfinishedrders,
i.e., whenever a finished order arrive u have to dedectdtue of the order from
the backlog of the tailor who executed it. :

enough to handle this efficiently?

Priority queuesare the data structure rec
many other applications. We start our discuss
ority queues maintain a skt of Elemens with Ke

e Mbuild({es,....en}): M:={ey,...,en}.
e M.insert(e): M:=MuU/{e}.
e M.min: return minM.
e M.deleteMin e:=minM; M:=M\{e}; returne

This is enough for the first part of our example. Each year, el la ne
gqueue containing aBlementwith a Keyof zero for each contract tailor.
order, we delete the smallé€skement add the order value to itsey,
Section 6.1 presents a simple, efficient implementatiohisfliasi

riority
assign an
nctionality.

0 The photograph shows a queue at the Mao Mausoleum (V. Besgerhttp://
conmons. wi ki nedi a. org/ wi ki /| mage: Zhengyangnen0L1l. j pg).

128 6 Priority Queues

Addressable priority queuesdditionally support operations on arbitrary ele-
ments addressed by an element haindle

as before, but return a handle to the element inserted.
remove the element specified by the haridle

crease the key of the element specified by the hédridlk.
MUQ; Q:=0.

eratisamovemight be helpful when a contractor is fired
because he > yor quality. Using this operatigether withinsert, we

i contract rules”: when an ordéeisered, we remove
who executed the order, subtract theevafithe order
from its Key valuej & i Element DecreaseKegtreamlines this process
to a single opera . . e shall see that thistigust convenient but that

insert

decreasmg keys ca d more efficiently thatramnpelement updates.
ations. For example, .92, we shall
see that our introd ple can also be viewed as agmgorithm for
a machine-schedulin e rather naive Sefesort algorithm of
Sect. 5.1 can be imple w: first, insémtl@iments into a priority
gueue, and then repeated| e smallest elementgmat @. A tuned version
of this idea is described i suIﬂimypsortalgonthm is popular

In adiscrete-event simulat
event happens at some sched

lation deletes the next event from th
events into the priority queue. Note t
(simulated events) increase monoto
many applications of priority queues ha
explains how to exploit monotonicity for intege

Another application of monotone priorit
boundapproach to optimization described in

gdtireerts newly generated
é5) of the deleted elements

the obtainable solution quality. The algorithm reg
partial solution, refines it, and inserts zero or more newvigla
We shall see two applications of addressable prie

jkstra’s algorithm for computing shortest paths (Sect310ses a 0
gueue where the keys are path lengths. The Jarnik—Primitalgofor co
minimum spanning trees (Sect. 11.2) uses a (honmonotoioe}ygueue
keys are the weights of edges connecting a node to a paréiahspy t
algorithms, there can be decreaseKeyperation for each edge
at most onensert anddeleteMinfor each node. Observe that the number of edges
may be much larger than the number of nodes, and hence thenmptation of
decreaseKegeserves special attention.

6.1 Binary Heaps 129

Exercise 6.1. Show how to implement bounded nonaddressable priority egies-
ing arrays. The maximal size of the queusviand when the queue has a sizeghe
first n entrie array are used. Compare the complexity of tleeie operations
' jons: one by unsorted arrays and one tigdarrays.

Exercise 6. to implement addressable priority queues usinglgtou
linked lists. ist_item represents an element in theuguand a handle is a

Heaps are a simple i lementation of nonaddhds bounded priority
queues [208]. The ounded in the same way addzbarrays can

j:

i > 2, has indexi/2]. The elements stored in this implicitly defined tree fulfileti
that parents are no larger than their children, i.e., treig@eap-ordered. THeft
the effect of insertindp. The thick edges mark a path from the rightmost leaf
new elemenb is moved up this path until its parent is smaller. The renmaj
the path are moved down to make room lforTheright part shows the of deleting the
minimum. The thick edges mark the paththat starts at the root and always proceeds to the
child with the smalleiKey. The elementy is provisionally moved to the root and then moves
down p until its successors are larger. The remaining element&mpyo make room fog

130 6 Priority Queues

Class BinaryHeapPQw : N) of Element

h: Array [1..w]ef Element /I Theheap his
n=0: /I initially emptyand has the
invari s h[]j/2]] <hlj] /I heap propertywhich implies that
> 0; return h[1] /I theroot is theminimum.
Fig.6.2. A cl ity queue based on binary heaps whose slzetinded by

e at stores the elements of the queue. The fliesttries
of the array are use efarrayhisap-orderedi.e.,

j<n: h[lj/2)]]<h[j].

What does "heap-
tion between positi
in Fig. 6.1. In a heap
Thus min takes time

e key to understandmdefinition is a bijec-
nodes of a complateptiree, as illustrated
m element is stored in the ¢o@trray position 1).
ty heap with space foelements also

takes constant time, as itonl cate an arraig®f\s Figure 6.2 gives
pseudocode for this basic

The minimum of a heap ence can be found in constant time;
this is the same as for a sorte wever, the heapnpyapenuch less restric-
tive than the property of being le, theomig one sorted version

flexibility permits iefficimplementations

of insertanddeleteMin We choose a d iption whiehyis simple and can be easily
git implementation.

pi.e., intoh[n], and

o the root:

then move® to an appropriate position on the path from laad

Procedureinserte: Elemen}
assertn<w
n++; hn:=e
siftUp(n)

HeresiftUp(s) moves the contents of nodeoward the root un p property
holds (see. Fig. 6.1).

ProceduresiftUp(i : N)
assert the heap property holds except maybe at position
ifi=1Vvh[|i/2]] <h[i] then return
assert the heap property holds except for position
swah(i],h[i/2]))
assert the heap property holds except maybe for positig2 |
siftup([i/2))

6.1 Binary Heaps 131

Correctness follows from the invariants stated.

Exercise 6.4.

that the running time sfftUp(n) is O(logn) and hence aimsert

result = h[1]
h_[l] :=hn|;

the heap property h
and always proceeds
equal keys, the choice
be zero, one, or two) hav
and move all elements on
restored. This strategy is m
the following procedursiftDo
ati, assuming that it holds alre
property holds in the subtree roote
descendantgofi:

ProceduresiftDown(i : N)
assert the heap property holds f
if 2i <nthen

if 2i +1> nVvh[2i] <h[2i+1] then
assert the sibling ofmdoes not exist or it has a lar,
if h[i] > h[m| then
swaphli],h[m])
siftDownm)
assert the heap property holds for the tree roo

, consider the patiat starts at the root

e smaller key (see@ig; in the case of
nd the path ahtdhildren (there may
fmél]. We puth[1] into this position
ion. In this way, the heap property is
rmulated as a se@iprocedure. A call of
eap property in the subtree rooted
rooted ah@ 2 + 1; the heap
j/2]|] < h[j] for all proper

ejlat2iandj =2i+1

/I iis not a leaf
2i + 1
2r key than
property is violated

Exercise 6.5. Our current implementation afiftbownneeds a
comparisons. Show how to reduce this toregO(loglogn). Hint:
pathp first and then perform a binary search on this path to find tbp
for h[1]. Section 6.5 has more on variantssiffDown

We can obviously build a heap fromelements by inserting
other in Qnlogn) total time. Interestingly, we can do better by
property in a bottom-up fashiosiftbownallows us to establish the heap property
for a subtree of height + 1 provided the heap property holds for its subtrees of
heightk. The following exercise asks you to work out the details &f ttiea.

132 6 Priority Queues

Exercise 6.6 (buildHeap). Assume that you are given an arbitrary arhgy..n] and

b) Implement bo i ntly and compare theiming times for ran-

p y p g
i i } It will be important how efficiently you
icular, it might make sense to unravel the

show that if the block siz
thenbuildHeapRecursivee

Theorem 6.1. The heap implementat
creating an empty heap and finding th
and insert in logarithmic tim®©(logn), an

ssable priority quessizes

|logn]. insertanddeleteMinexplore one root-
mic running time; min returns the contents of
Creating an empty heap amounts to allocating a
time. build calls siftDown for at most 2 nodes of deptH.
O(k—¢). Thus total the time is

(k) —ofx v K=£)_
o(OS;kz (k z)) o(z 03«2“) o(

The last equality uses (A.14).

Heaps are the basis béapsort We firstbuild a heap from the'elements and then
repeatedly perforrdeleteMin Before the-th deleteMinoperation, thé-th smallest
element is stored at the robfl]. We swaph[1] andh[n—i+ 1] and sift the new
root down to its appropriate position. At the erdstores the elements sorted in

6.2 Addressable Priority Queues 133

decreasing order. Of course, we can also sort in increasihey dy using anax-

Exercise 6.7 (addressable\binary heaps). Extend heaps to an implementation of
addressable pri 5. How many additional poinger&lement do you need?
additional pointers per element

*Exercise 6.8 (bul . Design an algorithm for insertinig new elements
into ann-elemen . Gi Igorithm that runs in tim&®logn). Hint: use a

Binary heaps have a ra igi Aklements are arranged into a single
binary tree of heightlogn| faster implementations of the oper-
ationsinsert, decreaseKeyre now look at structures which are
more flexible. The single, ¢ ary tree is replacga loollection of trees
(i.e., a forest) with arbitrary s
smaller than its parent. In othe ce of &leysy any root-to-leaf
path is nondecreasing. Figure 6.4 s erest.férethermore, the el-
ements of the queue are now store p itemghatihave a persistent location in
memory. Hence, pointers to heap it les to priority queue ele-
ments. The tree structure is explicitly pogbetween items.

We shall discuss several variants of ngugs. We start with
the common principles underlying all of them izes the common-
alities.

In order to keep track of the current mi
root containing it. We useninPtr to denote thi
using three simple operations: adding a new tre
combining two trees into a single one, and cutting out a
its own.

An insertadds a new single-node tree to the forest. So
into an initially empty heap will simply create single-node trees
insert is clearly @1).

A deleteMinoperation removes the node indicatechbipPtr. This tur
dren of the removed node into roots. We then scan the set ¢ (o
to find the new minimum, a potentially very costly process.
rebalancing, i.e., we combine trees into larger ones. Thesld®f this process dis-
tinguish different kinds of addressable priority queue aralthe key to efficiency.

We turn now todecreaseKey, k) which decreases the key value at a hardle
to k. Of coursek must not be larger than the old key stored wittDecreasing the

forest is manipulated
i p to date),
it a tree of

134 6 Priority Queues

Class Handle =Pointer to PQltem

/I root that stores the minimum & _____ Q
/I pointers to tree roots
lement stored anhinPtr

SRR
A A“*A

roots:= roots!
if xth<minth

remove the subtre
newTreéh)

Function inserfe : Elemen
i:==aHandlefor a newP
newTreéi)
returni

Function deleteMin: Element
e:= the Elementstored inminPtr
foreach child h of the root atminPtrido cut(h)
dispose minPtr
perform some rebalancing and upd
returne

Procedure decreaseKeyn : Handle k : Key)
change the key dfi to k
if his not a roothen
cut(h); possibly perform some rebalan

Procedureremovéh : Handle) decreaseKeh, —);
Procedure mergdo : AddressablePQ)
if xminPtr> «(0.minPtr) then minPtr:=o.minPtr

roots:=rootsu o.roots
o.roots:=0; possibly perform some rebalancing

/I usescombine

eMi

Fig. 6.3. Addressable priority queues

sow o

Fig. 6.4. A heap-ordered forest representing the{$et, 3,4,5,7,8}

6.2 Addressable Priority Queues 135

key associated with may destroy the heap property becaliseay now be smaller
order to maintain the heap property, wehmisubtree rooted at
oot. This sounds simple enough, but may create higjtéyed

trees in shape.
rations are easy. We gamovean item from the queue by

onstant time.
In the remai ion we shall discuss partictgriementations of

addressable pri¢

only in deleteMin If (rq,...
deleteMin combirer, with
gives an example.

roots

three pointers per heap iteimone to the oldest child (i.
one to the next younger sibling (if any), and one to the

an example.

6.2.2 *Fibonacci Heaps

Fibonacci heaps [68] use more intensive balancing op@stiean do pairing heaps.
This paves the way to a theoretical analysis. In particwi@r,obtain logarithmic

136 6 Priority Queues

tores four pointers that iiyeitdé parent, one
child, and two sibli he children of eastiefform a doubly linked
circular list using thesibli inters. The sibling pa@rg of the root nodes can be
used to represembots i rent pointers of roots and child pointers
ple, a null pointe

In addition, every hea fiethk. The rank of an item is the
number of its children. In

The surviving root will then i k of+ 1. An efficient method to combine

rank of any node. We shall prov
set of buckets, initially empty and nu
of old and new roots. When scanni
i-th bucket is empty, then put the roo
the two trees into one. This empties
Treat this root in the same way, i.e., try
occupied, combine When all roots have h
collection of trees whose roots have pairwise

A deleteMincan be very expensive if t
deleteMinfollowing n insertions has a co€2(n):
the cost ofdeletemins O(maxRank The reader
of amortized analysis (see Sect. 3.3) before proceedm ef
analysis, we postulate that each root holds one tg
amount of computing time.

elow {s logarithmic inn. Maintain a
axRankThen scan the list
pect tha-th bucket. If the
kebisempty, then combine

fisimvay, we have a
igure 6.6).
oots. For example, a

Lemma 6.2. The amortized complexity of deleteMirO$maxRank

Proof. A deleteMinfirst calls newTreeat mostmaxRanktimes (since degree
of the old minimum is bounded byaxRank and then initializes a i
maxRankThus its running time is @naxRankand it needs to cr
tokens. The remaining time is proportional to the numbecahbineoperations
performed. Eacltombineturns a root into a nonroot and is paid for by the token
associated with the node turning into a nonroot. O

6.2 Addressable Priority Queues 137

How can we guarantee thataxRankstays small? Let us consider a simple sit-
uation first. Suppose that we perform a sequence of inssrfidfowed by a one
deleteMin | ituation, we start with a certain number of singtede trees and
ombining akénomial treesas shown in Fig. 6.7. The binomial
ingle node, and the binomial tBgg is obtained by combin-
is implies that the root d8; has rank and thatB; contains
exactly 2 nodes. e rank of a binomial tree is logarithmic in tlze sf the

tree.
o
BO

Bl

Bs

2 pointers:

O .
Exercise 6.1(

Fig. 6.8. Three ways to represent trees of nonunifor sghdree of rank three,

Bs, is used as an example

a tree stays exponential in the rank of its root. Therefoehave to p
rebalancing to keep the trees in shape. An old solution [ZO®])

the heap binomial. However, this causes logarithmic cast ttec eKey

*Exercise 6.11 (binomial heaps). Work out the details of this idea. Hint: cut the
following links. For each ancestor gfand forv itself, cut the link to its parent. For

138 6 Priority Queues

decreaseK

X
(]
2]
©
()
S
[S]
()

©

Fig. 6.9. An
marked

g cuts. Marks are drawn as crosses.thidtroots are never

, cut the link to its parent. Argue that the trees
stay binomial and th aseKeis logarithmic.

go out of shape but in aated way. The
idea is surprisingly s inspired by the amadtiaealysis of binary
counters (see Sect. 3.
be marked or not. Roots are In particular, wiearTreéh) is called

Thus whertombinecombines two

technique iedathscading
cuts In other words, suppose that Yo an itemv and that the
k nearest ancestors wfare marked. nearest ancestors wvfinto
roots, unmark them, and mark tke- 1-t estor of(if it is not a root).

addition.

For the amortized analysis, we postulate
and each root holds one token. Please chec
the proof of Lemma 6.2.

vare marked. Herds > 0. The running time of the operation i§O
k marked ancestors carries two tokens, i.e., we have a toK titkens
We createk + 1 new roots and need one token for each of them. Als
unmarked node and need two tokens for it. Thus we need a tb
In other words,k — 3 tokens are freed. They pay for all buf
decreaseKeyThus the amortized cost decreaseKeis constant. O

tokens.

How do cascading cuts affect the size of trees? We shall shatittstays ex-
ponential in the rank of the root. In order to do so, we needesootation. Recall

6.3 *External Memory 139

the sequence 0, 1, 1, 2, 3, 5, 8, ... of Fibonacci numbers.eTaiesdefined by the
recurrenceo = 0, Fp = 1, andF = F_1 +F_» fori > 2. It is well known that
Fi1> ((1+ '>1618 foralli > 0.

Ex a2 aF > > ((1++/5)/2)' > 1.618 for all i > 0 by induction.

subtree rooted at ontains at leagtJnodes. In a Fibonacci heap with n

Proof. Consider a itemof ranki. Order the children o¥ by the time at
which they were dren of Letw; be thej-th child, 1< j <i. Whenw;
was made a child o had the same rank. Also, since at least the nodes

Wi,...,Wj_1 wergchi time, the rank of was at leasf — 1 then. The
t 1 since then, because othevyiseuld no
longer be a child o
We can now set ence for the minimal nunthef nodes in a tree
whose root has rank 2,and§ > 2+S+S +---+S 0.
The latter inequality fol that fgr> 2, the number of nodes in
the subtree with roow; is t we can also count the nodesnd
wy. The recurrence above e nerates the sequence 1, 2, 3, 5, 8,
...which is identical to the Fi i'sequence (minustiss fivo elements).
. LeTg = —2,andTi=2+To+ -+ T2
fori>2.Then,foi >2, T, 1—Ti=2+ —2-To—-—Ti_2=T_1,
i.e.,Tir1 =T+ Ti_1. This provesl, =
For the second claim, we obser
logn, which in turn implied < 1.4404

This concludes our treatment of Fib i he awarstite following
result.

and remove and deleteMin take an amortized<tim ithmithe size of the
gueue.
Exercise 6.13. Describe a variant of Fibonacci heap hastindt
ranks.

6.3 *External Memory

We now go back to nonaddressable priority queues and ca cache effi-
ciency and /O efficiency. A weakness of binary heaps is thesiftDownoperation
goes down the tree in an unpredictable fashion. This leadsatty cache faults and
makes binary heaps prohibitively slow when they do not fib ithte main memory.

140 6 Priority Queues

We now outline a data structure for (nonadressable) pyigtieues with more regu-
lar memory accesses. Itis also a good example of a genesaifyldesign principle:

. Each element of the priority queue is stored either in
e deletion queue Qor in one of the sorted sequences.

est element of eac ence, together with the index ofetipgesice holding the
element.

Procedureinse

if |Ql =mth
k++; S Q:=0;, Q'.insert(S.popFrontk))
Q.insert(e)
The minimum is stored ei i If the minimum is inQ’ and comes

inserted intaY’:

Function deleteMin
if mMinQ < min@ then e:
ese (ei):=Q.delete

if § # () then Q.inse
returne

/I assume min @= oo

It remains to explain how the ingr ts of our data stmectwe mapped to the
memory hierarchy. The queu€sand Q
boundm for Q should be a constant fraction g
multiple of the block sizeB. The sequenceS &
only the B smallest elements & are kept in a
the last element dfj is removed, the nex8 ele
are effectively merging the sequencgsThis is

memory dizand a
ory buffer. When

oaded. Note that we
iway merging

W . external

Fig. 6.10. Schematic view of an external-memory priority queue

6.4 Implementation Notes 141

algorithm described in Sect. 5.7.1. Each inserted elensentitten to disk at most
once and fetched back to internal memory at most once. Sihd&slk accesses are
in units of a full block, the 1/0O requirement of oug@lithm is at mosh/B

fornq

ent for internal memory is at most kB+ 2k. This is below
the total fa sizbl if m=M/2 andk < |(M/2—-2K)/B| ~ M/(2B). If
there are ma s, the internal memory may evdgtaaérflow. However,
the earliest this ppen is aftefl + [(M/2— 2k)/B]) ~ M?/(4B) insertions.

For examplegfifv . Gbyte of main memory, 8-byte elesjantd 512 Kbyte
disk blocks A andB = 216 (measured in elements). We can then

perform about % ip — enough for 128 Ghyte of data. Similarly to axar
mergesort, we cg amounts of data by perfgrminitiple phases of
multiway mergi The data structure bezogonsiderably more

complicated, but it t I/0 requirementrdnsertions and deletions

i nts. An implementation of this idea is two
to three times faste y heaps for the hierarchydmt cache and main

memory [164]. There ations for exterrexhory [48].

(slightly) accelerate the implem
quire additional knowledge about ke
tation more difficult, however.

e If h[0] stores &eyno larger than eyever inserted into a binary heap, then
siftUp need not treat the case- 1 in [

thensiftDownneed not treat the case21 way. If such large
keys are stored ih[n+ 1..2n+ 1], then the 50 be eliminated.
e Addressable priority queues can use a special dummy iteinerdtan a null

Similarly, theswapoperations could be replaced by unidire
thus halving the number of memory accesses.

Exercise 6.14. Give iterative versions diftDownandsiftUp. Also replac
operations.

Some compilers do the recursion elimination for you.

As for sequences, memory management for items of addr
can be critical for performance. Often, a particular agglan may be able to do this
more efficiently than a general-purpose library. For examplany graph algorithms
use a priority queue of nodes. In this case, items can bepocated into nodes.

142 6 Priority Queues

There are priority queues that work efficiently for integey. It should be noted
that these queues can also be used for floating-point numineised, the IEEE
floating-pointStandard has the interesting property tbaafy valid floating-point
numbersdlandb, ax b if and only if bits(a) < bits(b), wherebits(x) denotes the
reintérpretation ok as,an unsigned integer.

6.4.1 C++

The STL clas$riority _queteoffers nonaddressable priority queues implemented
using binary heaps) The external-memory library STXXL [48frs an external-
memory priority queues,kEDA [118] implements a wide variefyaddressable pri-
ority queues, incldding pairing heaps and Fibonacci heaps.

6.4.2 Java

The clasgava.util.PrigkityQueuesupports addressable priority queues to the extent
that removeis implemented. HowevegdecreaseKewnd mergeare not supported.
Also, it seems that the cukrent implefmentationsshoveneeds timé@(n)! JIDSL [78]
offers an addressable prioritysquedsl.coreapi.PriorityQueue which is currently
implemented as a binary heap.

6.5 Historical Notesand Fusther Eindings

There is an interesting Internet survef priority queugs. It lists the following appli-
cations: (shortest-) path planning (see Chap. 10),/dsare¢nt simulation, coding
and compression, scheduling in operating systems; congotaximum flows, and
branch-and-bound (see Sect. 12.4).

In Sect. 6.1 we saw an implementation agléteMinbytep-down search that
needs about 2 lagelement comparisons, and avariant usingbinary searcheleals
only logn+ O(loglogn) element comparisons. The latter is mostly of theoretical in
terest. Interestingly, a very simple “bottom-up®algonitican be even better: The old
minimum is removed and the resulting hole is Sifted.doWwntalwayto the bottom
of the heap. Only then, the rightmost element fills the hotbisisubsequently sifted
up. When used for sorting, the resultiBgttom-up heapsorEquires%nlognJrO(n)
comparisons in the worst case amdgn+ O(1) in the average case [204, 61, 169].
While bottom-up heapsort is simple and practical, our onwpeexnenitsindicate that
it is not faster than the usual top-down variant (for integeys). This surprised
us. The explanation might be that the outcomes of the comsmpasisaved by the
bottom-up variant are easy to predict. Modern hardwarewgrscsuch predictable
comparisons very efficiently (see [167] for more discuskion

The recursivebuildHeap routine in Exercise 6.6 is an example ofcache-
oblivious algorithm[69]. This algorithm is efficient in the external-memory nebd
even though it does not explicitly use the block size or caihe

Thttp://ww. | eekil | ough. conf heaps/ survey results. htni

6.5 Historical Notes and Further Findings 143

Pairing heaps [67] have constant amortized complexityfeertandmerge[96]
and logarithmic amortized complexity fdeleteMin The best analysis is that due to
Pettie [154 an [65] has given operation sequenaesistng of Qn) inser-
nd @nlogn) decreaseKeythat require tim& (nlognloglogn)

for able priority queues that includépraviously proposed vari-
ants of pairi .

The famil able priority queues is large. Vuiilerfi202] introduced
binomial heaps an and Tarjan [68] invented Fitoeeaps. Hayer [94]
described ag ing operations that are akithéooperations used for
search tree peration yidlda heapg103], which have performance
guarantees similagto acci heaps and do without pa@nters and mark bits.
It is likely that t ster in practice than Fiéam heaps. There are

also priority que
bounds that we ha nacci heaps [30]. The bdeicis to tolerate
continuously inveshe work in reducing

constant time fodecrease
136]. Using randomizatio

loglogn) time for deleteMin[193,
an even be reﬂw:@(\/log Iogn)

have themonotonicity propertgan be simple and practical. Section 10.3 gives exam-
ples.Calendar queuef33] are popular i e-event simulation communit
These are a variant of thmicket queu

