(00]

G presentation

Scientific results
ference proceedj

available in the form of agglin journals and con-
rious Webources. These articles are not self-
with related contétdwever, when you read an
partial result, you ynaften ask yourself what

cles cite the old artic j suchas Google Scholavijate this functionality by
analyzing the referen i es and buildirdatabase of articles that
efficiently supports loo i

We can easily model thi
each article and an edge fo itation. An e@dge) from articleu to articlev
means that citesv. In this termi e+ article) stores all its outgoing
edges £ the articles cited by it) edges (thecklsiciting it). If
every node were also to store the in woulcbe ® find the citing
articles. One of the main tasks of G o caosthe reversed edges.
This example shows that the cost asic elemyeopeeration on a
graph, namely finding all edges ente odpedds heavily on the
representation of the graph. If the incomin licitly, the operation
is easy; if the incoming edges are not stored, rivial.

In this chapter, we shall give an introducti
senting graphs in a computer. We focus most
undirected graple = (V,E) is represented as t
G' = (V,Upuvee {(u,v), (wu)}). Figure 8.1 illustrates
graph. Most of the data structures presented also allo
allel edges and self-loops. We start with a survey of
to support.

e Accessing associated informatidaiven a node or an edge, we freq
to access information associated with it, for example thigkteof a
the distance to a node. In many representations, nodes ay&s
and we can store this information directly as a member o
otherwise mentioned, we assume tiat 1..n so that infor

objects,

lon associated

1 The picture above shows a spider web (USFWS}gdep: / / conmons. wi ki nedi a.
org/wi ki /|l mage: WAt er _drops_on_spi der _web. j pg).

168 8 Graph Representation

with nodes can be stored in arrays. When all else fails, wexhaays store node
or edge |nfor ationina hash table. Hence accesses carplmmznted to run in

2 sometimes also want to know the ingpetiges.

ir of nodegu,v), we may want to know whether this
can always be implemented usinglatahle, but we
may want to ha { ing even faster. A more specializeidiportant query
is to find ther, of a directed edgéu,v) € E if it exists. This
operation ca i by storing additional pagnb@nnecting edges

algorithmic probl is not always the representagieen initially. This
is not a big proble i i
other in linear time.
e Update.Sometimes we move nodes or edges. For exahmle
description of some al [

Perhaps the simplest representation
Each edge contains a pair of node in
as an edge weight. Whether these node
merely a matter of interpretation. Sequence re

gorithms require easy access to the edges incide
the ordered representations discussed in the followintios
Chap. 11, we shall see two minimum-spanning-tree j
an edge sequence representation and the other needs a plugi
ture.

8.2 Adjacency Arrays — Static Graphs

To support easy access to the edges leaving any particutiay, can store the
edges leaving any node in an array. If no additional inforomais stored with the
edges, this array will just contain the indices of the targetes. If the graph istatic

i.e., does not change over time, we can concatenate all littksarrays into a single

8.2 Adjacency Arrays — Static Graphs 169

Fig. 8.1. Thefirst row shows an undirecte e_corresponding bidireprsgzh.
Thesecond rovshows the adjacency array an acen epresemaifdhis bidirected
graph. Thehird row shows the linked-edge-objects :

edge arrayE. An additional arrayw stores the'starting positions of the subarrays,
efout oY . ligs convenient

to add a dummy entry [n+ 1] with V[n+ 1] = m+ 1.

are then easily accessibleBp/|[V]], ..., E[V[v+1] — 1]

n+ m+ ©(1) words. This is even more compact than thne Rords need
edge sequence representation.

Adjacency array representations can be generalized te atixtition
tion: we may store information associated with edges inrsgparra
edge array. If we also need incoming edges, we may use i
to store the reversed graph.

Exercise 8.1.Design a linear-time algorithm for converting an edge seqaeepre-
sentation of a directed graph into an adjacency array reptagon. You should use

170 8 Graph Representation

only O(1) auxiliary space. Hint: view the problem as the task of sgréilges by
their source node and adapt the integer-sorting algoritiows in Fig. 5.15.

Jacency Lists — Dynamic Graphs

Edge arrays
tage isthatitis e
toinsertan 0
it, we still

en if there is room in the edge arrByto accommodate

ave to e edges associated with naded to n one position to

the right, which tak

In Chap. 3, 0 implement dynamic sequencexaiaise any
of the solutions present produce a dynamic gragahstructure. For each
nodev, we represe of outgoing (or incoming, or outgoing and
incoming) edges b ray or by a (singly or gouipked list. We

inherit the advantag nd disadvantages of the respsetingence representations.
Unbounded arrays ar ient. Linked listsnationstant-time inser-

tion and deletion of edg i
sparse in the sense that
for sparse graphs should
Sect. 3.1, because an additi
ple in Fig. 8.1, we show circul

ly a few inciderseddjacency lists
ithout the dumemy ihtroduced in

e stored in an unbounded
position igy. Explain how
you ahmt have to maintain

arrayE,, and an edge= (u,Vv) is spec
to removee = (u,V) in constant amo
the relative order of the other edges.

acyclic discussed in Chap. 2.9 so that it runs ift linear tinee,design an appropriate
graph representation and an algorithm using it efficieitlgt:
nodes with outdegree zero.

edge and its reversal only once. Also, we may want to haveaaxss
to its reversal.

We shall describe two solutions. The first solution simplgaasate
tional pointers with every directed edge. One points to thersal,
points to the information associated with the edge.

The second solution has only one item for each undirected éatgpair of di-
rected edges) and makes this item a member of two adjacetsy3io, the item for
an undirected edgfu, v} would be a member of list§, andE,. If we want doubly

8.4 The Adjacency Matrix Representation 171

linked adjacency information, the edge object for any eflge} stores four point-
ers: two are used for the doubly linked list represenkpgand two are used for the
doubly link presenting,. Any node stores a pointer to some edge incident
it, all edges incident on the node canrbhedrsed. The bottom

n example. A small complication lieshie fact that finding
ge now requires some work. Note thatpe @bject for an
edge{u,v} st efidpoints in no particular order. Hence, whenxpee the

t alternative is to stowsp v in the edge object [145].
endpoint then yields the othatpint. Also, this rep-

yam adjacency matrix AA;j is 1if (i,) €

val and edge quedsdsimconstant time.
g or leaving a node. This is ofiliefit

rage requirementnd bits. For very
dense graphs, this may be
arrays. However, even for s, the advantage IsiBredditional edge
information is needed.

Exercise 8.4 Explain how to represen i graphwittodes and without
self-loops usingi(n— 1) /2 bits.

Perhaps more important than a lly storing‘the adjaceratyix is the con-
ceptual link between graphs and line
On the one hand, graph-theoretic problems can egyosethods from linear
algebra. For example, @ = A, thenG;j counts vaths frarto j with
exactlyk edges.

Exercise 8.5.Explain how to store an x n mat
storage @m-+ n) such that a matrix—vector multig
time O(m+ n). Describe the multiplication algorithm. Exp
so that products of the forxd A can also be computed.

A whereAj; =1 if and only if Bjj # 0. If an algorithm for computing €onnected
components finds that the undirected graph representéddontai isti
connected components, this information can be used toeetire
of B such that we obtain an equivalent equation of the form

(5e)(2)-(2)

and columns

172 8 Graph Representation

This equation can now be solved by solviBgk; = ¢; andByx, = ¢ separately. In
practice, the situation is more complicated, since we ydrale matrices whose cor-
respondin are disconnected. Still, more sopéisticgraph-theoretic con-
cepts can help to discover structure in thexmaltich can then be

8.5 Implicit Re
Many app graphs of special structureedtrently, this structure
can be exploited to mpler and more efficient repriedgi®ns. We shall give

two examples.
Thegrid grap =[0..k— 1] X [O..E— 1] and edge set

E={((i,1)(13 u{(() eVEifi-i=1}

is completely define 0 pal ametkrandé F|gure 8.2 show§34 Edge
weights could be stored i

An interval graphis defi intervals. For each interval, we have a
t if the corréspgpimtervals overlap.

F |
4

e grid graphGz4 (left) and
raph with five nodes and six

(a) Show that for any set afintervals there is
integers in1..2n] and that defines the sa
(b) Devise an algorithm that decides whether t
is connected. Hint: sort the endpoints of the inte
endpoints in sorted order. Keep track of the numbe
but not ended.
(c*) Devise a representation for interval graphs that neéggg <
efficient navigation. Given an interva) you need to find al
secting it;l” intersectd if | contains an endpoint df or | C I’. How
find the former and the latter kinds of interval?

8.6 Implementation Notes

We have seen several representations of graphs in thiseshdpey are suitable
for different sets of operations on graphs, and can be tungler for maximum

8.6 Implementation Notes 173

performance in any particular application. The edge secpisgpresentation is good
only in specialized situations. Adjacency matrices aredgoo rather dense graphs.
Adjacency listS are good if the graph changes frequentlyy @&en, some variant
of adjacency arrays is fastest. This may be true even if taplgchanges, because
oftef’there are only.a few changes, or all changes happenimitatization phase
of a graph algorithm,’or changes can be agglomerated intsamtal rebuildings of
the graph, or ehangess€an be simulated by building seveéasdegraphs.

There are many variants of the adjacency array representétiformation asso-
ciated with nedes and edges may be stored together with thgsets or in separate
arrays. A rule of thumb is/that information that is frequgrdtcessed should be
stored with the nodestand edges. Rarely used data shoulgbm lseparate arrays,
because otherwige’'it would often be moved to the cache witheing used. How-
ever, there can bg'other, mere’complicated reasons whyateerays may be faster.
For example, if both adjacency information and edge weightésread but only the
weights are changed, then'separateiarrays may be fasterseaba amount of data
written back to the main memory is reduced.

Unfortunately, no graph representation is best for all pags. How can one cope
with the zoo of graph representations?? First, librariehsasgLEDA and the Boost
graph library offer several différent graph data types, amel of them may suit your
purposes. Second, if your application is not particularhet or space-critical, sev-
eral representations might deyand there is no need to dewsstam-built repre-
sentation for the particular application. Third, we recoemul that graph algorithms
should be written in the style of\genericgarogramiming [7 jeTalgorithms should
access the graph data structure only through a small seeodtipns, such as iterat-
ing over the edges out of a node, ac¢essing information eésdavith an edge, and
proceeding to the target node of an edge. The interface caagiared in an inter-
face description, and a graph algorithmean be run on angseptation that realizes
the interface. In this way, one can experiment withidifféfepresentations. Fourth,
if you have to build a custom representation foryour appilice make it available
to others.

8.6.1 Ct+

LEDA [131, 118, 145] offers a powerful graph data type th@imsurts allarge variety
of operations in constant time and is convenient to usesmaisb space-consuming.
Therefore LEDA also implements several more space-effiaidfaceney array rep-
resentations.

The Boost graph library [27, 119] emphasizes a strict s¢joaraf representa-
tion and interface. In particular, Boost graph algorithms on any representation
that realizes the Boost interface. Boost also offers its graph representation class
adjacencylist. A large number of parameters allow one to choosé betweeantar
of graphs (directed and undirected graphs and multigyphge€s of navigation
available (in-edges, out-edges, . . .), and representabiorertex and edge sequences

2 Multigraphs allow multiple parallel edges.

174 8 Graph Representation

(arrays, linked lists, sorted sequences, .. .). Howevenguld be noted that the array
representation uses a separate array for the edges adjaeach vertex.

Special classes ©
tion. An important

It in additional requaresfor their representa-
aphs- graphs that can be drawn in the plane
ering of the edgeseawljdo a node should
ith respect to a planar drgwifithe graph. In ad-

along afaceof the graph,

representations for planar
Recall thatbipartite gra phs where the nodedet LUR

can be decomposed into twi bdetnd R such that the edges are only

between nodes ih andR. All re i iscussed here also apply to bipartit

graphs. In addition, one may want to idendR of the graph.
Hypergraphs H= (V,E) are gener, hs, where edges can connect

more than two nodes. Hypergraphs @are convenie repiedas the correspond-

defined graphs.dlec
that a seV is agroupif it has an associative operatiena neutral
element, and a multiplicative inverse operatio
to a setSC V has the edge s€tu,uxs):ue
because graph-theoretic concepts can be us
group theory yields concise definitions of ma
For example, Cayley graphs have been propose
parallel computers [12].

In this book, we have concentrated on convenie

efficient way. Significant compression is possible if we havp
about the graphs. For example, the edges of a triangulatiarpoints in
can be represented with aboutt Iits [42, 168].

