d ection

2
Q

Telephone director
index can be searc
can usually find a na
try to find a name. To

betically by lagheaWhy? Because a sorted
in the telephone dingactiba huge city, one

. In an unsorted inadsqdy would even
n, this chapter tezckhiou how to turn
ordered calbecti.e., how tosortthe
uses as welleany example of a
massive data-processing ta
people needed seven years
The engineer Herman Hollerit
cian, spent much of the ten years to
machines for mechanizing this gig [thotigh 1890 census had
to evaluate more people and more asic ai@uaas finished in
1891. Hollerith’s company continued lay an importarierm the development
of the information-processing industry;
tional Business Machines (IBM). Sorting is im

anually process data fromSheehkus in 1880.
0 paudi in this evaluation as a statisti-

deveglopimting and sorting

30 and living on a farm. Two applications of s@kting solve pingdlem. First, we sort
20 and 30 years of

age. Then we sort the subcollection by home and HE

living on a farm.

let us give a formal definition. The input is a sequesce (e, .~
ments. Each elemeet has an associatdaty k = key(e ). The keys com
ordered universe, i.e., there isiaear order < defined on the key$.F
notation, we extend the comparison relation to elementfaet< € |

1 The photograph was taken by C. M. Bell (see US Library of Ce
tographs Division, ID cph.3c15982).

2 Alinear order is a reflexive, transitive, and weakly antisyetric relation. In contrast to a
total order, it allows equivalent elements (see Appendix A for details)



100 5 Sorting and Selection

if keye) < key(€). The task is to produce a sequer&t& (€],...,€,) such thats
is a permutation o$ and such thae) < &, <-.- < €. Observe that the ordering of

implies|x| < |y|.

tool; it is frequentlgad as a preprocessing
. We shall give some examples

Sorting is a ubi
step in more comple

e Preprocessing for .5 on binary search, we have already
seen that a sorted direc [ search, both forhsimnd computers.

ts together to coumbtledimi-
in, hashimg alternative. But
fase-gfffeaient, determinis-

nate duplicates, or otherwise pro
sorting has advantages, since w
tic sorting algorithm that scale to
e Processing in a sorted ordeCertai
are processed in sorted order. Exer .
Kruskal’s algorithm in Sect. 11.3 and seven
problem in Chap. 12. You may also wan
Exercise 8.6 on interval graphs.

In Sect. 5.1, we shall introduce several
quadratic complexity, but are still useful for sma Ix
learn some low-level optimizations. Section 5.2 introds
divide-and-conquer sorting algorithm that runs in tim
lishes that this bound is optimal for @bmparison-basedlgorit ,
that treat elements as black boxes that can only be compa avedaroufd. The
quicksortalgorithm described in Sect. 5.4 is again based on the di
principle and is perhaps the most frequently used sortiggrahm. Q
also a good example of a randomized algorithm. The idea behiitks
simple algorithm for a problem related to sorting. Sectidhéxplai
smallest ofh elements can bgelectedn time O(n). Sorting can be'made even faster
than the lower bound obtained in Sect. 5.3 by looking at thedtierns of the keys,
as explained in Sect. 5.6. Finally, Section 5.7 generatipésksort and mergesort to
very good algorithms for sorting inputs that do not fit inteeimal memory.

a simple
5.3 estab-



5.1 Simple Sorters 101

Exercise 5.3 (a simple scheduling problem)A hotel manager has to procesad-
vance bookings of rooms for the next season. His hoteklidesntical rooms. Book-
ings contai ival date and a departure date. He walfitedtout whether there

S easy to check whether a sorting routine produces a
sorted output. It i eck whether the outplgdseapermutation of the
input. But here i§ 2 Monte Carlo algorithmirieggers: (a) Show that
(€e1,...,en) is aper . iff the polynomial

is identically zero. Herezis a v . ranyg > 0, letp be a prime withp >
max{n/e,ey,...,en,€,..., i is to evaluate the above polynomial
modp for a random value € tifler,...,en) isnota permutation

of (¢,...,€,), then the result luation is zero with probabilityreost €.
Hint: a nonzero polynomial of rehas Zeros.

5.1 Simple Sorters

We shall introduce two simple sorting
sort
Selection sortepeatedly selects the smal

initially empty. The process continues until
example,

(,(4,7,1,1) ~ (1),(4,7,1) ~ (1,1),(4,7) ~

The algorithm can be implemented such that it

constant amount of space for loop counters, etc. The rurtimmeis quadr

rts an ar-
uence. The

Exercise 5.6 (simple selection sort)mplement selection sort so that i
ray with n elements in time ((}12) by repeatedly scanning the input
algorithm should be in-place, i.e., the input sequencelamdttpu
share the same array. Hint: the implementation operatagphmases numbered 1 to
n. At the beginning of thé-th phase, the first— 1 locations of the array contain the
i — 1 smallest elements in sorted order and the remaining+ 1 locations contain
the remaining elements in arbitrary order.



102 5 Sorting and Selection

In Sect. 6.5, we shall learn about a more sophisticated imgigation where the
input sequence is maintained aprority queue Priority queues support efficient
of the minimum element. The resultiggrahm runs in time
uently used. It is efficient, it is deterministiayorks in-place,
e can be dynamically extended by etstiiat are larger than
elements. The last feature is inaooin discrete-event sim-

an event may ther events in the future.
Selection

g the'element to be deleted from the input segednsertion sort
maintains the sal ariant by choosing an arbitrary el¢iwfethe input sequence
but taking care tg ent at the right place endhtput sequence. For

Figure 5.1 gives an insplace array implementation of inserort. The implementa-
tion is straightforward
a single comparison. When th inserted is smaller than all previously
ginning wuifiiother tests. Otherwise,

In the worst case, insertion
in decreasing order, each input
i of the outer loopi elements have to

n n

i;(i -1)= —n+i;i =

movements of elements (see also (A.11)).
Nevertheless, insertion sort is useful. It is'fa
hence can be used as the base case in divide-and-cong

n

(sayn < 10) and
ahgofor sorting.

ProcedureinsertionSorta : Array [1..n] of Element
for i:=2tondo
invariant a[1] <--- <ali —1]
/I movea]i] to the right place

e:=a[i]
if e< a[1] then /I new minimum
for j:=idownto2do a[j]:=a[j—1]
al]:=e
else II'us
for j:=i downto —co while a[j — 1] > edo a[j]:=a[j — 1]
alj:=e

Fig. 5.1.Insertion sort.



5.2 Mergesort —an logn) Sorting Algorithm 103

Furthermore, in some applications the input is already teithsorted, and in this
situation insertion sort will be fast.

t sorted inputs)Prove that insertion sort runs in timei®+ D)
i| andr(g) is therank (position) ofe in the sorted output.

Exercise 5.8\(average-case analysispssume that the input to an insertion sort is
a permutatio nbers 1 moShow that the average execution time over all
possible perm . Hint: argue formally that about one-third of the input
elements i the array have to be moved tddfiehird of the array.
Can you i ent to show that, on averagygl — O(n) iterations of

array-based insertio i in Fig. 5.1 so thae&ds only @nlogn) com-
i binary search assdesdin Chap. 7. What is
insertion sort?

Exercise 5.10 (efficien
described in Chap. 7 to

the data structure for sorted sequences
insertion sorttas in time Gnlogn).

*Exercise 5.11 (formal veri ion). favorite verification formalism, for
example Hoare calculus, to insertion sort preduicpermutation of the
input (i.e., it produces a sorte

unsorted sequence is split into two par
recursively, and the sorted parts are merged
proach is efficient because merging two sot
The globally smallest element is either the f

Jize parts are sorted
sequence. This ap-

using the same approach, and iterate until all el
put. Figure 5.2 gives pseudocode, and Figure 5.3 illud
the sequences are represented as linked lists (see
location of list items is needed. Each iteration of th
one element comparison and moves one element to the outt
constant time. Hence, merging runs in linear time.

Theorem 5.1.The function merge, applied to sequences of total le
in time O(n) and performs at most-A 1 element comparisons.

For the running time of mergesort, we obtain the followin:

Theorem 5.2.Mergesort runs in tim®(nlogn) and performs no more thamlogn]
element comparisons.



104 5 Sorting and Selection

Function mergeSoif(ey, ..., en)) : Sequencef Element
if n=1thenreturn (e;)
else retu mergeSort(er, ..., e n/2|)).

mergeSort(€| /)11, --€n)))

represented as lists
Function mer : encef Elemen} : Sequencef Element

if a.is mpty .concatb); return ¢
if b.isEmpty .concata); return ¢
if afirst<b.f eToBacle.first)

else ToBaclb.first)
Mergesort
<2777 178727
split .
<27 77 1> <87 27 ) 1> C operation
split  —~ ( movea
2 (11 (82 (1) moveb
split NN (1,1) movea
(7) (1)(8) (2) (8) ( (1,1,2) moveb
merge ~ ~ ~ >
(1,7) (2,8) (1,8) (1,122 movea
merge (1,1,2,2,7)  concatb
(1,2,7) (1,2,8,8) ,1,2,2,7,8,8)
merge

—_—
(1,1,2,2,7,8,8)

Fig. 5.3. Execution ofmergeSort(2,7,1,8,2
mergeSorand theright part illustrates thenergel

—
=0
(0]
[0)
=l
(@)
Q
:
E
(%]
24
=
2
@
w
-
>
@
=
(4]
(o]
c
=
%25
o
=}
=1

Proof. Let C(n) denote the worst-case numb
We haveC(1) =0andC(n) <C(|n/2])+C([n/2
master theorem for recurrence relations (2.5) 'sbig
shall give two proofs. The first proof shows th@&(n)
proof shows tha€(n) < n[logn].

Forna power of two, we defln@( 1)=0andD(n) =

Fork = 0 we haven = 1 andC(1) = 0= D(1), and the clalm certainly holds. For
k > 1, we observe thdin/2| < [n/2] < 2“1, and hence

C(n) <C(|n/2))+C([n/2])+n—1<2D(2< ) 42— 1<D(2Y) .

This completes the first proof. We turn now to the second, edfjproof. We prove
that



5.2 Mergesort —an logn) Sorting Algorithm 105

C(n) <n[logn] — 29" + 1 < nlogn

by induction . Forn=1, the claim is certainly true. So, assume- 1. We

es. Assume first that we hale'2 |n/2] < [n/2] < 2 for

+([n/2lk—2+1) +n-1
=n(k+1)— 21+ 1=n[logn] — 209" 4 1 .

Otherwise, we ha n/2] = 21 + 1 for some integek, and
=k, and[logn] = k+ 1. Thus

—2fteanl 4 7.

jed using a simiéleurrence relation.
O

primary data structure. In Sect. 5.3,
far as the number of comparisonsis

ergis basically optimal as
is alsrmdghoice if compar-

advantage that it streams through mem
in memory hierarchies. Section 5.7 has more g
usual method of choice for an efficient array,
mergedoes not work in-place. (But see Exerd

Exercise 5.12 Explain how to inserk new ele
time O(klogk+n).

Exercise 5.13We discussednergefor lists but used 3
scription ofmergeSortGive the details omergeSorfor |nked I

Exercise 5.14Implement mergesort in a functional programming lang

Exercise 5.15Give an efficient array-based implementation of merg
vorite imperative programming language. Besides the iapuay, al
iliary array of sizen at the beginning and then use these two a to store et int
mediate results. Can you improve the running time by switgho insertion sort for
small inputs? If so, what is the optimal switching point iruyimplementation?



106 5 Sorting and Selection

Exercise 5.16 The way we describenerge there are three comparisons for each
loop iteration — one element comparison and two termindéets. Develop a variant
using senti t needs only one termination test. Candyothis task without

i lements to the sequences?

3.20introduced a list-of-blocks representdtiosequences.
mergesort for this data structureirigumerging, reuse

ne output sequence. Compare theespnd time efficiency
ucture, for plain linked listsd for arrays. Pay attention

Algorithms give u complexity of a probl&w.the preceding
discussion, we kno ems in time Q@nlogn). Can we do better,
and maybe even ac “yes” answer requirestter algorithm
and its analysis. But ho ially argue a “ncsvaar? We would have
ious, can run iretofmlogn). Such an
argumentis called Bwer b answer? The answer is both no and
yes. The answer is no, if w i rselves to compatimmed algorithms, and

the answer is yes if we go b parison-based algamithivie shall discuss

non-comparison-based sorting in Sect.
So what is a comparison-based s ? The irgpauset{ ey, ..., en}
of n elements, and the only way the i rn aboutjtstiis by compar-

ing elements. In particular, it is not allowed to exploit tiepresentation of keys, for

trees. They make an initial comparison;
with outcomes yes and no. On the basis of t
the next comparison. The key point is that t

eitalgoproceeds to
a@dt depends only

on the outcome of all preceding compariso gere 5.4 shows a
sorting tree for three elements.

When the algorithm terminates, it must have ormation so
that it can commit to a permutation of the input. When caniit performthe

sider any of then! permutations of the input, say. The
to the situation thagy 1) < ep) < ... < eyp). We answer all qué
algorithm so that they conform to the ordering definedrbyhis will lea
leaf /;; of the comparison tree.

Lemma 5.3.Let rand o be two distinct permutations of n elemen
and/s must then be distinct.

Proof. Assume otherwise. In a leaf, the algorithm commits to sonderdng of the
input and so it cannot commit to bothando. Say it commits tar. Then, on an input
ordered according to, the algorithm is incorrect, which is a contradiction. O



5.3 A Lower Bound 107

The lemma above tells us that any comparison tree for somtingt have at least
n! leaves. Since a tree of depthhas at most 2 leaves, we must have

2">nl or T>logn!.

plexity of sorting, werst-case instances are
instances. Furthermbeshbound applies even

element appears twi

where the sum extends over all
of the leafl;,.

algorithm for determining the smallest a S eshents oh elements
requires at least— 1+ logn comparisons. Give

Fig. 5.4. A tree that sorts three elements. We first commarande,. If e; <
e with e3. If & < e3, we havee; < e, < e3 and are finished. Otherwis
e3. For either outcome, we are finishedel{f> e, we compare, with e3. If'e; > e3, we have
e > & > ez and are finished. Otherwise, we competavith e3. For either outcome, we are
finished. The worst-case number of comparisons is threeaVéage number iR+ 3+ 3+
2+3+3)/6=8/3



108 5 Sorting and Selection

Exercise 5.19The element uniqueness problamthe task of deciding whether in

a set ofn elements, all elements are pairwise distinct. Argue thatparison-based
algorithmsr (nlogn) comparisons. Why does this not contradict the fact that
we ca blem in linear expected time using hghin

Exercise 5.

the depth of _Argue thatA = (1/n!) 5 ,d is the average-case complexity
of a comparison- orting algorithm. Try to show #hat logn!. Hint: prove
first that 5 24 consider the minimization problem “minimiZe,d,
subject to that the minimum is attained when dfk are equal.
Exercise 5.21 (so, all inputs optimally) Give an algorithm for sorting el-
ements using at nt comparisons. (a) FHoe {2,3,4}, use merge-

sort. (b) Fok=5 use seven comparisons. This is diffimldtge-
sort does not do t

algorithm of Sect. 5.2. Quicks

| the difficult whdforethe recursive calls.
The idea is to distribute the inp i

or meguences that represent
es tbthershorter sequences
gualinergesort complete,
equad sUnfortunately, this
pickingredom splitter ele-
ment. The splitter element is usually ca denote the pivot element
of elements that are

5 gives a high-level
realization of this idea, and Figure 5.6 depicts a samplewgi@n. Quicksort has an
expected execution time of(@logn), as we sha 15.4.1.In Sect. 5.4.2,
we discuss refinements that have made quick i sorting algo-
rithm in practice.

recursively and concatenate the res
we would like to split the inputinto t

Function quickSor{s : Sequencef Elemen} : Sequencef Element
if |s <1thenreturn s
pick p € suniformly at random
a:=(ees:e<p)
b:=(ecs:e=p)
ci=(ees:e>p)
return concatenation of quickSd#), b, and quickSofrt)

Fig. 5.5.High-level formulation of quicksort for lists.



5.4 Quicksort 109

(3,6,8,1,0,7,2,4,5,9)

(6,8,7.4,5,9)

(4,5) (6) (8,7,9)

Fig. 5.6. Exeeution 0 ig. 5.5) on(3,6,8,1,0,7,2,4,5,9) using the first element
of a subsequence a he first call of quicksort 8sesthe pivot and generates the
subproblemg1,0,2) (3), and(6,8,7,4,5,9). The recursive call for the third subproblem uses
6 as a pivot and gg blednS), (6), and(8,7,9)

5.4.1 Analysis

To analyze the running ti i for an input seqeene (ey,...,e,), we
focus on the number o

erations contribute only co
time.

Let C(n) denote the worst comparisons needed fomany i
sequence of size and any choi i
determined. The subsequeneed, an
pivot with all other elements. This
elements smaller than the pivot ak
C(0)=C(1)=0and

e formed by comparing the
risons. Assume there &e
r than the pivot. We obtain

C(n) <n—1+max{C(k)+C(kK):0< <n—kj .
It is easy to verify by induction that

n(n—1)
2

The worst case occurs if all elements are different ag
smallest element as the pivot. THD@&) = n(n—1)/2.

C(n) <

different. Other cases are easier because a pivot thatoseueral timeg results in

a larger middle sequendethat need not be processed any further. sider a fixed
elementg, and letX; denote the total number of timesis comp
element. Thery; X is the total number of comparisons. Whenegeis compared
with a pivot element, it ends up in a smaller subproblem. &fwe, X; < n-—1,
and we have another proof for the quadratic upper bound. $.etli a comparison
“good” for g if & moves to a subproblem of at most three-quarters the sizeeAny



110 5 Sorting and Selection

can be involved in at most lggsn good comparisons. Also, the probability that a
pivot which is gaod forg is chosen, is at least/2; this holds because a bad pivot
must belon er the smallest or the largest quartdreobtements. So[K] <

B iX] = O(nlogn). We shall now give a different argument

Theorem 5.6: ed number of comparisons performed by quiclssort i
n) < 2ninn < 1.45nlogn.

ote the elements of the input sequence in sorted order.
red at most once, and only if one of them is picked as a
pivot. Hence, W risons by looking at theatdr random variables
Xij, i < j, whereXjj = 1] ‘are compared angj = 0 otherwise. We obtain

n n
C(n)=E [ = Zi prob(X;j = 1)
i j=i+1
The middle transformation e linearity of eqtations (A.2). The

E[Xij] = prol(X;j = 1). Befor
need to determine the proba

Lemma 5.7.For any i< j, prob(X;; =

Proof. Consider thg — i+ 1-element
M is selectedgl and€, are not compar taII elements frdinare passed to the
same recursive calls. Eventually, a piydtro
the same chance/IM| of being selected. Ip = haveX;; = 1. The

de] are passed to

Now we can finish proving Theorem 5.6 using
n n

r0b(Xaj =)= izlj—|2+1 it

n
E: Z%_Zan— 1) <2n(1+Inn—1)=2ninn

n
n n
For the last three steps, recall the properties ofrttie harmonic

Sh . 1/k<14Inn(A.12).

Note that the calculations in Sect. 2.8 for left-to-rightdimaa were very similar,
although we had quite a different problem at hand.



5.4 Quicksort 111

5.4.2 *Refinements

We shall no uss refinements of the basic quicksort ilgor The resulting
algorith rt, works in-place, and is fast and space-efficient. Figure 5.7
sh e, and Figure 5.8 shows a sample execih® refinements
are nontrivi eed to discuss them carefully.

ProcedureqSe A ement £,r : N) I Sort the subarrag[¢..r]
/I Use divide-and-conquer.
/I Pick a pivot element and
/I bring it to the first position.
/I pis the pivot now.

swagal/],a[j
p:=al(]

=/ ji=r

repeat IMale i— <] r]
while a]i] /I Skip over elements
while a[j] > /I already in the correct subarray.
if i < jthen /I If partitioning is not yet complete,

swapali],a[j / (*) swap misplaced elements and go on.

until i > j /I Partitioning is complete.

ifi<({+r)/2then q /I Recurse on

else qsS /I smaller subproblem.

endwhile

insertionSorta[¢..r]) /I faster for smalk — ¢

ch as the insertion
details of the ma-
lue somewhere

smaller than some constamy, we resort to a si
sort shown in Fig. 5.1. The best choice fgrd
chine and compiler and needs to be determi
between 10 and 40 should work fine under a ve

The pivot element is chosen by a functipickPivo
further. The correctness does not depend on the choice g

consisting ofk elements, wherk is either a small constant, say
depending on the problem size, s[a)/r —(+ 1] . The first choice requir
amount of work, but gives little control over the size of thégroble
choice requires a nontrivial but still sublinear amount afrky but yie

3 Some authors propose leaving small pieces unsorted andirgeap he end using a
single insertion sort that will be fast, according to Exeecb.7. Although this nice trick
reduces the number of instructions executed, the solutiows is faster on modern ma-
chines because the subarray to be sorted will already beheca



112 5 Sorting and Selection

i - o 36810724509
368 201/86734509
268 1002/567 34|89
208 01| |4 3765|809
20 3 4|5 6|7
56|

ig. 5.7) on(3,6,8,1,0,7,2,4,5,9) using the first element as the
d sidellustrates the first partitioning step, showing elements
apped. Tight-hand sideshows the result of the recursive

. After selecting thegtip, we swap it into the
itidrof the full array).

i is at the left end of the subarray apé at
ndscans to the left. After termination of the loop,

we have = j+1ori=
p, all elements in the su aller thap, each subarray is a proper
0, recursive callgSor{a,/, j) and

ese recursive calls in assteordard

[%2]
c
o
QD
=
)
<
QD
>
2
=i
|
-+
»
2

fashion; this is discussed bel

Let us see in more detail the partitiening loops work.He first iteration
of the repeat loop, does not advance ing aand j moves left to the
rightmost element no larger tham So j larger value; generally, the
latter is the case. In either case, w
and decremenit. In order to describe
cases.

QO
>
o
2,
5
(@]
=
D
3
D
>
=

all the way td, the
swap has no effect,and=/¢—1andi=/+1 1ent and decrement.
We have an empty subproblefn/ — 1 and a
complete, and both subproblems are proper

If j moves down td + 1, we swap, incre

subarrays are proper subarrays.
If j stops at an index larger thans- 1, we have’ < i

least one such element), and all elements rigljtaok at leasp (and isfat least
one such element). Since the scan loopifskips only over elements s
p and the scan loop foy skips only over elements larger thanfurther,
of the repeat loop maintain this invariant. Also, all funtlsean loops
to terminate by the claims in parentheses and so there is eub
of-bounds check in the scan loops. In other words, the sagpslare as concise as
possible; they consist of a test and an increment or decremen



5.4 Quicksort 113

Let us next study how the repeat loop terminates. If we havg + 2 after the
scan Ioops we avie< j in the termination test. Hence ‘we continue the loop. If

eat loop termmates with the proper subprcxbd’eunandl .r.
scan Ioops can occur onlyst[f] =p In this case, the swap

the first case, and ot move in its scan loop pmust stop at — 1 in the
second case. In eithe , we hiavej + 1 after the scan loops. The line marked
(*) is not execute ve subproblémjsandi..r, and both subproblems

Exercise 5.221s it sa he scan loops skip over elements equil ts this
safe if it is known that is#

The refined quicksort h |n a seemingly giravay. Recall that
we need to make the rec andgSor{a,i,r). We may make
these calls in either order. it this flexibility by kirag the call for the smaller

subproblem first. The call for\the Iarger sub roblem woulenttbe the last thing
done inqSort This situation is k
literature. Talil recursion can be elimi
right values and jumping to the firs
the while loop does. Why is this m
the recursion stack stays logarithmic
This follows from the fact that we mak
which is at most half the size.

phaameters@(andr) to the
edureisTik precisely what
I'> Beeaitlsguarantees that

sorts a sequence consisting ofdifferent strings. What goes
equal strings? Solve this problem. Show that the expecteciss
is O(N+nlogn) if N= Sel€].

Function mkqgSorts: Sequencef String, i: N) : Sequencef String
assertve € €s: e[l..i— 1] =€[l..i — 1]
if |[s| <1thenreturn s
pick p € suniformly at random
return concatenation of mkgSdfe € s: €fi] < pli]),i),
mkqSort(e € s: €fi] = pli]),i+ 1), and
mkqgSort(e € s: €fi] > pli]),i)

ivot character



114 5 Sorting and Selection

Exercise 5.25Implement several different versions g&ortin your favorite pro-
gramming language. Use and do not use the refinements déscirsthis section,
and study t t on running time and space consumption.

Selection refers te of problems that are easily egtitecsorting but do not
ing. Let= (ey,...,en) be asequence and call its sorted
tion of the smallest element requires determigjng
ires determinijg and selection of th&-th smallest
iom of the median refers to selectég,. Selection

versions =X¢€,..
selection of the lar

how thatktk smallest element can also be
determined in linear recursive procedhoews in Fig. 5.9 solves
the problem.
is therefore catjaitkselectThe key
recursive salAs before, a pivot is
chosen, and the input seq to subsequencgd, andc contain-
ing the elements smaller th
respectively. Ifja] > k, we rec
a suitably adjusted. If |a] < k <
and we return it. Observe that the | =k=1,

and hence no special base case is . Fi 5.10aikssthe execution of

quickselect.

/I Find an element with rank

Function selecs: Sequencef Element; k N) : Ele
assert|s| > k
pick p € suniformly at random /I pivot key
a:=(ecs:e<p)
if |a] > k then return selecta,k)
b:=(ees:e=p)
if |a| + |b| > kthen return p
c:=(ecs:e>p)
return selectc,k—|al — |b|)

S E!% 5.9.Qg|ckselectb

(3.1,4,5,9,2,6,5,35,8) 6|2 (1) (2)
<37 47 57 97 67 57 37 57 8> 4 6 <37 47 57 57 37 4> <6>
(3,4,5535) 45 (343 (555

Fig. 5.10.The execution o$elect(3,1,4,5,9,2,6,5,3,5,8,6),6). The middle elementiold)
of the currensis used as the pivat



5.5 Selection 115

As for quicksort, the worst-case execution time of quicksels quadratic. But
the expected execution time is linear and hence is a logaigtfactor faster than
quicksort.

ickselect algorithm runs in expected ti@@) on an input of

time. It does
execution ti
2n/3. Lety denote
the conservative
only for good piv
the work outside
such that

Exercise 5.28 (streaming selection).

(a) Develop an algorithm that finds theth smallest'e
is presented to you one element at a time in an ord
have only space @) available. This models a si
arrives over a network or at a sensor.

(b) Refine your algorithm so that it achieves a running tin{e
want to read some of Chap. 6 first.

*(c) Refine the algorithm and its analysis further so thatryalgorithm runs in
average-case time (@) if k = O(n/logn). Here, “average” mea
ders of the elements in the input sequence are equally lik



116 5 Sorting and Selection

5.6 Breaking the Lower Bound

The title of tlon is, of course, nonsense. A lowerrubis an absolute state-
a certain model of computation, tagetask cannot be carried
nd. So a lower bound cannot be brokemecareful. It can-

he model of computation used. The lob@ind does not

us to break ti¥nlogn) lower bound valid for
ple, numbers and stigge structure; they are
sequences of digit specuvely.
Let us start with
integers, say in the r

an arrayb[0..K — 1] of b

orithm runs in time @+ K). We use
lly empty. We then scan the input and
is can be done in constant time per
e buckeitsaly, we concatenate all
the nonempty buckets to ob
For example, if the elements pairs whose first elemenkéy én the range 03

and
s=((3,a),(L,b),(2,c),(3,d)

we obtainb = [{(0,e), (0, f)), ((1,b), ,
and output(0,e), (0, f),(1,b), (1,i), (2, ), (3, g)> This example
illustrates an important property Ksort. nts with the same key
inherit their relative order from the input sequence: Hérs, erucial that elements

<( a),(3,d),(3,9))]

0..K — 1. ThenKSortis applied once for each digityEi 4 es a radntnsgr
algorithm for keys in the range. ®9 — 1 that runs in tir
ments are first sorted by their least significant digiD

ProcedureKSort(s: Sequencef Elemeny Ss—> ¢
b=((),...,()) : Array [0..K — 1] of Sequencef Element
foreach e € sdo bjkey(e)]. pushBacke) 1
s:=concatenation of [9],...,b[K — 1]

. o . b[0] b[1] b[2] b[3] b[4]
Fig. 5.11.Sorting with keys in the range & — 1.



5.6 Breaking the Lower Bound 117

ProcedureLSDRadixSof(s : Sequencef Elemeny

for i:=0tod—d do ‘ digits
redefi as(xdiv K') mod K 1% - [ ]
key(x)

Procedure
n:=|s|
b=((),... : 1] of Sequencef Element
foreache e sda
fori:=0ton- QO(|b[i]|log|b[i]|)

Ksort. SinceKSort is stable ith the saimth digit remain sorted
process with respect to digior
example, ifk =10,d = 3, an

(017,042,666,00
(111,911,042, 666,017,
(007,111,911,017,042,
(007,017,042, 111, 666,

S
S
S
S

Radix sort starting with the most sign
sible. We applyKSortto the most significant di
sively. The only problem is that the buckets
it would be expensive to applgSortto small
another algorithm. This works particularly we
uniformly distributed. More specifically, let us nov
numbers with 0< key(e) < 1. The algorithmuniformSorting
keys to integers between 0 and-1 = |g/ — 1, and g
where buckebli] is responsible for keys in the rangj¢n, (i + 1
if s=(0.8,0.4,0.7,0.6,0.3), we obtain five buckets responsiblefe
0.2, and

b=[(), (0.3), (0.4), (0.7,0.6), (0.8)];

only b[3] = (0.7,0.6) is a nontrivial subproblemuniformSortis ver
randomkeys.

Theorem 5.9.1f the keys are independent uniformly distributed randonues in
[0,1), uniformSort sorts n keys in expected ti®@) and worst-case tim&(nlogn).



118 5 Sorting and Selection

Proof. We leave the worst-case bound as an exercise and concentrifite average
case. The total execution tinfeis O(n) for setting up the buckets and concatenating
the sorted , plus the time for sorting the bucketsTlLdenote the time for

=O(n)+ Y E[T] = O(n) +nE[Ty] .

<n
The second€qua 5 from the linearity of expeaas (A.2), and the third
equality u | bucket sizes have the sanrébditon for uniformly
distributed inputs. remains to show th@lihE= O(1). We shall prove the
n if a quadratic-time algorithm such as insertion
. The analysis is sirdldine arguments used to

analyze the behavio ing inChap. 4.
(E[B3]). The random variabl&, obeys a
binomial distribution trials‘and success probabilityd, and hence

where the last inequality fol irli approxation to the factorial (A.9).
We obtain

and hence H] = O(n) (note that the split at=
1/2).

put. The space consumption shouldrbe O(n/B+ KB)
of sizeB.

5.7 *External Sorting

Sometimes the input is so huge that it does not fit into int ory. In this
section, we shall learn how to sort such data sets in the redtenemory model
introduced in Sect. 2.2. This model distinguishes betweéstinternal memory
of sizeM and a large external memory. Data is moved in the memory rigieyan



5.7 *External Sorting 119

make_things_ as_sinple_as _possible bu t_no_sinpler
) formRunsC ) formRuns(C ) formRuns(C
__aaeil npsss __aaeil npsss __eil mopr st
merge
____bbeeiill moopprssstu

fast in external memory and mergesortsscba

blocks of sizeB. §
€ rgesort as the startimg foviexternal-memory

on scanning.
sorting.

Assume that th
a nonrecursive impl ion for the case where the nuofbelements is di-
visible byB. We load s i
favorite algorithm, for e
nal memory. We refer to th
n/B block reads and/B blo
of runs into larger runs iflog
run. Figure 5.14 gives an exal

How do we merge two runs?
and from the output run in internal
the input buffers are filled with the fi
buffer is empty. We compare the lea
smaller element to the output buffer. |
next block of the corresponding input run; i
it to external memory.

Each merge phase reads all current runs
Therefore, each phase neetd8 block reads a
all phases, we obtaif2n/B)(1+ [logn/M]) 1/O
thatM > 3B.

Therun formation phaseéakes
| off2/B 1/0s. We then merge pairs
ge phase®nding up with a single sorted
ns of length 12.

from each of theripuatiruns
these kddauffers Initially,

e input runs, and the output
the ibpfiers and move the

5.7.1 Multiway Mergesort

In general, internal memory can hold many blocks and nott . Il de-
scribe how to make full use of the available internal memargirdy merging. The
idea is to merge more than just two runs; this will reduce tbhmiber Of phases

In k-way mergingwe mergek sorted sequences into a single ou
each step we find the input sequence with the smallest first
is removed and appended to the output sequence. Extermabrpémplementation
is easy as long as we have enough internal memork foput buffer blocks, one
output buffer block, and a small amount of additional stetag



120 5 Sorting and Selection

For each sequence, we need to remember which element weraeattyucon-
sidering. To find_the smallest element out oflabequences, we keep their current
i queue A priority queue maintains a set of elements support-
insertion and deletion of the minim@imapter 6 explains how
implemented so that insertion aretideltake time Qogk)
riority queue tells us at each step, whichese contains

t buffer runs dry, we fetch thexnblock of the corre-

sponding e output buffer becomes fullyrite it to the external
memory.

How large cam Vv e need to keek+ 1 blocks in internal memory
and we need a eys. So we neetk+ 1)B+O(k) <M ork =

B%D . (5.1)

uch larger bastheflogarithm. In-
terestingly, the above upp complexitgarting is also a lower
bound [5], i.e., under fairly mptions, no edksorting algorithm with

and then merge these runs into a si
for DRAM and “external memory” st
restriction, for all practical system co

parisons.

Exercise 5.31 (balanced systemsgtudy the ¢
internal memory, and mass storage (currentl
size needed to achieve good bandwidth for I/O. Cany
multiway mergesort would require more than one mergia
that fills all the disks in the system? If so, what fraetion tu
would you have to spend on additional internal memory to
ing phase?

5.7.2 Sample Sort

The most popular internal-memory sorting algorithm is netge ut quicksort.
So itis natural to look for an external-memory sorting aition based on quicksort.
We shall sketclsample sortin expectation, it has the same performance guarantees
as multiway mergesort (5.1). Sample sort is easier to adapatallel disks and



5.7 *External Sorting 121

parallel processors than merging-based algorithms. Eurtbre, similar algorithms
can be used for fast external sorting of integer keys aloadjtles of Sect. 5.6.
Instead single pivot element of quicksort, we now kisel splitter el-
split an input sequence intooutput sequences, duckets
ensfor whichs_1 < e< s. To simplify matters, we define

the artificial
ent keys. Th ould be chosen in such a way thddubieets have a size
of roughlyn/k. Th ets are then sorted recursively. In particularkéts that fit
into the inte can subsequently be sorted inflgriNote the similarity

to MSD-rad in Sect. 5.6.

The main challg find good splitters quickly. Samphe sses a fast, sim-
ple randomized e integewe randomly choos@+ 1)k — 1 sam-
pleelements fro mydés then sorted internally, and we define the
splitters as = S( i <i 1,i.e., consecutive splitters are separated by

a samples, the firs dbgamples, and the last splitter is followed
by a samples. Takin ts in ‘a small sample set, but the splitting will not
be very good. Moving sample will resulpénfect splitters, but
the sample will be too nalysis shows thettinga = O(logk)
achieves roughly equal bu ost for samplimhsorting the sample

The most I/O-intensive is Kaway distribution of the input
sequence to the buckets. buffer block for the sgguence and one
buffer block for each bucket. These buffers are handledogaisly to the buffer
blocks ink-way merging. If the spli i
right bucket for an input elemeetin ti

Theorem 5.10.Sample sort uses

o(g (1+]o0

We leave the detailed proof to the reade orlkely ingredient
of the analysis here. We uge= ©(min(n/M,M /B ample of size
O(klogk). The following lemma shows that with this Sample dikely that
any bucket has a size much larger than the average ant factors

Lemma5.11.Let k> 2 and a+ 1= 12Ink. A sample of sizéa+ 1
ensure that no bucket receives more tdayk elements with probability a

Proof. As in our analysis of quicksort (Theorem 5.6), it is usefustod
versions = (€],...,€,) of the input. Assume that there is a buck;
elements assigned to it. We estimate the probability ofdahént.
We splits' into k/2 segments of lengthrZk. The j-th segment; contains ele-
ments%jn/kJrl to efz(Hl)n/k. If 4n/k elements end up in some bucket, there must be
some segmerif such that all its elements end up in the same bucket. Thiswign o



122 5 Sorting and Selection

happen if fewer thaa -+ 1 samples are taken froty) because otherwise at least one
splitter would be chosen frompand its elements would not end up in a single bucket.
Let us conc on a fixgd

m variabké to denote the number of samples taken frgm

andX; = 0 ot i neX = 3 1ci<ar1k-1%i- Also, theX;’s are independent,
and prolgX; = 1 ependence allows us to use the Chernoff bound (A.5) to

estimate the
2 3(a+1)
k — 2
HenceX < a-+1impli E[X], and so we can use (A.5) with=1/3.
Thus
prob(X 112 < g (@+1)/12 _ g-Ink _ 1

The probability that a
thus at most 1k, and h
from somet; is at most(k/2

r of samples issefofrom a fixed; is
that an insufficient number isseho
s, with probability at least/2, each

bucket receives fewer thamgkelem O
Exercise 5.32Work out the de al-memory implementatibsamm-
ple sort. In particular, explain howto im [tiwagtdbution using &/B+

Exercise 5.33 (many equal keysExplaih how to generalize multiway distribution
so that it still works if some keys occur
ent solutions. One uses the sample to find ou
solution makes all elements unique by interp
i as the paie,i).

mfseauent. Another
t an input position

e improves the
m)) guar-
hah+ £)n/k

quality of the distribution. Prove that a sample of s
antees, with probability (at least-11/m), that no bucke
elements. Can you get rid of tlgen the logarithmic fagter~

5.8 Implementation Notes

Comparison-based sorting algorithms are usually availebstanda
S0 you may not have to implement one yourself. Many libraut
tations of quicksort.

Canned non-comparison-based sorting routines are leddyreaailable. Fig-
ure 5.15 shows a careful array-based implementatioswfrt. It works well for

ed implemen-



5.8 Implementation Notes 123

ProcedureKSortArray(a,b: Array [1..n] of Element
c=(0,...,0) :Array[0..K—1] of N /I counters for each bucket
i keyali])]++ /I Count bucket sizes

C,c[K) :=(C+c[K,C) /I Storey ik c[K] in c[k].
/I Distributea]i]

a. The output i, ¢ i ents afin sorted order. We first count the number of
inputs for each ke partial sums of the couFihally, we write each input

small to medium-siz s. For laigeandn, it suffers from the problem that

the distribution of ele may cause a daaltdor every element.
To fix this problem, o ase algorithms simtaldSD radix sort.

The numbeK of output se

variant ofuniformSort(see Fig.

Another important practical
Sometimes we have rather large ele
For example, you may want to sort
uation, it makes sense to first extra
with pointers to the original elements: , only the kenjnfer pairs are sorted.
If the original elements need to be brou ntog ' can be permuted
accordingly in linear time using the sorted key<p

Multiway merging of a small number of seguences (perh
special mention. In this case, the priority quele can beikep
[160, 206].

e type aheids to be sorted.
ortedesjplect to small keys.
abase bgdast. In this sit-
store them array together

employee
the keys a
n

pe efght) deserves
processor registers

5.8.1 C/C++

Sorting is one of the few algorithms that is part of the C stat
the C sorting routingsortis slower and harder to use than thé<Cfu
The main reason is that the comparison function is passetlaston poin
called for every element comparison. In contrastt uses the template
of C++ to figure out at compile time how comparisons are perfor
code generated for comparisons is often a single machiitre: i
ters passed teort are an iterator pointing to the start of the seguence to bedor

and an iterator pointing after the end of the sequence. Iregperiments using an

Intel Pentium Il and GCC 2.950rton arrays ran faster than our manual implemen-
tation of quicksort. One possible reason is that compilesigieers may tune their




124 5 Sorting and Selection

code optimizers until they find that good code for the libraeysion of quicksort is
generated. There is an efficient parallel-disk externatory sorter in STXXL [48],
an external- ry implementation of the STL. Efficientgbat sorters (parallel
| multiway mergesort) for multicorachines are available with
dTemplateLibrary [180, 125].

5.8.2 Java
The Java 6 platfo ethsmmit which implements a stable binary merge-
sort for Arrays andCollec can use a customizalfemparator but there

In later chapters, we shall di eneralizatbsorting. Chapter 6 dis-
cusses priority queues, a
moval of the smallest elem
peated deletion of the minim
quite good sorting algorithms. A
in Chap. 7, a data structure for maint; igtallaws searching, insert-
ing, and removing elements in logar ic ti

We have seen several simple,
this chapter. An interesting question
by deterministic ones. Blum et al. [25]
algorithm that is similar to the randomized 8
deterministic algorithm makes pivot selectio
the input set into subsets of five elements, d

icular, insertmglements followed by re-
orting. Fastripyiqueues result in

cient ran@dnailgorithms in
ther theserdlgos can be replaced

recursion: it splits
ef each subset by
gre n/5 medians by
calling the algorithm recursively, and finally use
splitter. The resulting algorithm has linear worst-caseceiti
constant factor makes the algorithm impractical. ( Fvite reader to set up a
recurrence for the running time and to show that it h i
There are quite practical ways to reduce the expected nuafio isens re-
quired by quicksort. Using the median of three random elésgelds an
with about 11881logn comparisons. The median of three medians of

reduced further by making the number of elements consider:
pendent on the size of the subproblem. Martinez and Roui& wed that for a
subproblem of sizen, the median 0®(,/m) elements is a good choice for the pivot.
With this approach, the total number of comparisons becdhe(1))nlogn, i.e.,

it matches the lower bound oflogn — O(n) up to lower-order terms. Interestingly,



5.9 Historical Notes and Further Findings 125

the above optimizations can be counterproductive. Altiofiegver instructions are
executed, it becomes impossible to predict when the inndewdops of quicksort

ict the directions of branches taken, éteeffiect on perfor-
egative [102]. Therefore, in [167] , a enisym-based sorting

icksort is proportion-exteidtg38].
prithm of some historical interasShell sort[174, 100],

chniques for improving eaterltiway merge-
, ect. 5.4.1] forms runs of expected sMaiBing

a fast memory of si element is selected from the internal priority
queue and written r and the next elemetitarinput buffer can
extend the currentr it to the priority queue. Alke,use oftournament
treesinstead of gener iori ads to a further impmoant of multiway
merging [112].

Parallelism can be use
form of a uniprocessor usi
tiway mergesort and distrib
i.e., anyD consecutive blocks ina run or bucket are evenly distribotest the disks.
Using randomization, this idea i
also overlap I/O and computation [4 ort algorof Sect. 5.7.2 can
be adapted to parallel machines [24] and results injan effipiarallel sorter.

We have seen linear-time algorithms for highly structurgzliis. A quite general
model, for which thenlogn lower bou oes not hold, is thveord model In this
model, keys are integers that fit into a : , &8 or 64-bit keys,

rting of very laege gets, either in the
in the form ofi@tiprocessor. Mul-

0

and the standard operations on words (bitwisé-AND, bitwig& addition, ...) are
available in constant time. In this model, sagrting is passii deterministic time
O(nloglogn) [11]. With randomization, even ispossible [85]Flash
sort[149] is a distribution-based algorithm tha

Exercise 5.36 (Unix spellchecking).Assume you have a d amy consisting of
a sorted sequence of correctly spelled words. To che entconvert it to a

ary lsimeously,/and output
the words in the text that do not appear in the dictionarylémgntthis'spellchecker
using Unix tools in a small number of lines of code. Can youtds in one







