
Data Structures and Algorithms
The Basic Toolbox

Corrections and Remarks

Kurt Mehlhorn and Peter Sanders

September 7, 2010

In this document, we collect corrections and remarks. Negative line numbers
count from the bottom of a page.

Corrections

Page 2, line 4 of second paragraph: section→ chapter

Page 7, line 1: sc → c

Page 9, line 16: n-bit → n-digit

Page 9, line -5: a1 ·b0 → a0 ·b0

Page 11, line 17: n-bit → n-digit

Page 11, statement of Theorem 1.7: ThenTK(n) ≤ 99nlog3+48·n+48· logn
→ ThenTK(n) ≤ 207·nlog3.

Page 16, line -3 to Page 17, line 17:We shall show that

TK(2k +2) ≤ 69·3k −24·2k −12

for k ≥ 0. Fork = 0, we have

TK(20+2) = TK(3) ≤ 3 ·32+2 ·3 = 33= 69·30−24·20−12 .

1

For k ≥ 1, we have

TK(2k +2) ≤ 3TK(2k−1+2)+12· (2k +2)

≤ 3 ·
(

69·3k−1−24·2k −12
)

+12· (2k +2)

= 69·3k −24·2k −12 .

Again, there is no magic in coming up with the right inductionhypothesis. It is
obtained by repeated substitution. Namely,

TK(2k +2) ≤ 3TK(2k−1+2)+12· (2k +2)

≤ 3kTK(20+2)+12·
(

30(2k +2)+31(2k−1 +2)+ . . .+3k−1(21+2)
)

≤ 33·3k +12·

(

2k (3/2)k −1
3/2−1

+2
3k −1
3−1

)

≤ 69·3k −24·2k −12 .

It remains to extend the bound to alln. Let k be the minimal integer such that
n ≤ 2k +2. Thenk ≤ 1+ logn. Also, multiplying n-digit numbers is no more
costly than multiplying(2k +2)-digit numbers, and hence

TK(n) ≤ 69·3k −24·2k −12

≤ 207·3logn

≤ 207·nlog3 ,

where the equality 3logn = 2(log3)·(logn) = nlog3 has been used.

Page 17, Exercise 1.9 Replace the exercise by

Solve the recurrence

TR(n) ≤

{

3n2+2n if n < n0,

3 ·TR(⌈n/2⌉+1)+12n if n ≥ n0,

wheren0 is a positive integer. Optimizen0.

Page 22, line -4: constant→ constantc.

Page 38, line -9: d = b = 4→ d = b = 2.

Page 39, line 1: W → We

2

Page 44, line 7: (pi − p j) → (p j − pi).

Page 47, line 2 of second paragraph: smallestL primes with→ smallestL
primesp1, . . . , pL with

Page 47, line -12: L = 1012n → L = 1012(n/k)

Page 55, line 6: K33 → K3,3.

Page 55: Exercise 2.9→ Exercise 2.20

Page 56: Exercise 2.20→ Exercise 2.21

Page 56: Exercise 2.21→ Exercise 2.22

Page 61, line -13: elements→ items

Page 61, line -2: positions→ position

Page 63, lines -15, -9, and -7: element→ item

Page 71, line 7: replace “followed byk−1 zeros” by “followed byk zeros”.

Page 74/75: stacks, queues, anddeques also support the operationisEmpty.

Page 83, line 3: m’s → mℓ’s

Page 85, line 5: We have to defineX to exclude a possible list element with key
k which will certainly be in the list regardless how the hash function is choosen.

Page 85, line 10: Xi → Xe.

Page 86, line 20: Xi → Xe.

Page 87, line -14: “g : 0..αn →{0,1,2}” −→ “g : 0..m−1→{0,1,2}”.

Page 87, lines 4, 15, -4: ha(x) → ha(x).

3

Page 97, line -5 k-wise→ k-way

Page 110, Theorem 5.6: 1.45n logn → 1.39n logn.

Page 110, line -2: Sect. 2.8→ Sect. 2.7

Page 114, line 9: e⌊n/2⌋ → e′⌊n/2⌋.

Page 123, line 4: C :=0→C :=1.

Page 131, line 17: no larger→ no smaller.

Page 140, line 19: Change “If the minimum is inQ′ and comes from sequence
Si, the next largest element ofSi is inserted intoQ′” into “If the minimum is inQ′

and comes from sequenceSi, the first element ofSi is moved toQ′” for increased
clarity.

Pages 147 and 150: Implementation oflocate. Once again, we see that the
phrase “It is clear” is dangerous. Our invariants for both binary search trees and
(a,b)-trees do not guarantee that the leafx we reach is actually the list element
specified as the result oflocate(k). When we remove an element somewhere used
as a splitter, we may end up at an elementx < k. This is easy to fix however: If
x < k return the successor ofx in the linked list. Figure 1 shows that we need
to change only two lines of pseudocode. We also need to changethe insertion
method. If we end up at an elementx < k we simply swap it with the element to
be inserted before proceeding with the insertion.

Page 158, line 1: hh → hk.

Page 162, line -6: two kind of operation→ two kind of operations.

Page 169, line 5: out ofV → out of v.

Page 170, line -15: discussed in Chap. 2.9→ discussed in Section 2.9.

Page 172, line 3: Change “disconnected” into “not connected” for increased
linguistic quality.

4

Function ABItem::locateRec(k : Key, h : N) : Handle
i:=locateLocally(k)
if h = 1 then

if c[i] → e ≥ k then return c[i]

else return c[i] → next

else return c[i]→locateRec(k, h−1) //

7 11 13

13

1 2 4

12

3
i

k = 12

h = 1 h > 1

Figure 1: Corrected version of functionlocateRec for (a,b)-trees. The framed
pieces are new.

Page 173, line -17: Change

The algorithms should access the graph data structure only through
a small set of operations, such as The interface can be captured
in an interface description, and a graph algorithm can be runon any
representation that realizes the interface.

into

The algorithms should access the graph data structure only through a
small interface – a set of operations, such as ldots. An algorithm
that only accesses the graph only through this interface canbe run on
any representation realizing the interface.

for increased clarity.

Page 187, line -8: than→ that

Page 211, Line -9– -7: d(·) → d[·].

Page 222, Line 4: O(V) → O(n).

Page 227: The original edge(u0,v0) stored at the end of the priority queue tu-
ples should consistently be put into parentheses.

Page 247: The instance used here violates the assertion that the profitdensities
should be sorted. Better use the profit vectorp = (10,24,14,20). Furthermore,
∑k<i xiwi → ∑k<i xkwk, ∑k<i xi pi → ∑k<i xk pk and∑ j<i xiwi → ∑ j<i x jw j.

5

Remarks

Page 40, Section 2.6.2, Theorem 2.6, master theorem for the analysis of recur-
rences: Recent papers with many interesting generalizations of the master theo-
rem are [1, 3, 2]. .

References

[1] M. Akra and L. Bazzi. On the solution of linear recurrenceequations.Com-
putational Optimization and Applications, 10(2):195–210, 1998.

[2] T. Leighton. Notes on better master theorems for divide and conquer recur-
rences. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.39.1636.

[3] C. Yap. A real elementary approach to the master recurrence and gener-
alizations.http://www.cs.nyu.edu/cs/faculty/yap/papers/
SYNOP.htm.

6

