
FR
E

E
C

O
P

Y
5

Sorting and Selection

Telephone directories are sorted alphabetically by last name. Why? Because a sorted
index can be searched quickly. Even in the telephone directory of a huge city, one
can usually find a name in a few seconds. In an unsorted index, nobody would even
try to find a name. To a first approximation, this chapter teaches you how to turn
an unordered collection of elements into an ordered collection, i.e., how tosort the
collection. However, sorting has many other uses as well. Anearly example of a
massive data-processing task was the statistical evaluation of census data; 1500
people needed seven years to manually process data from the US census in 1880.
The engineer Herman Hollerith,1 who participated in this evaluation as a statisti-
cian, spent much of the ten years to the next census developing counting and sorting
machines for mechanizing this gigantic endeavor. Althoughthe 1890 census had
to evaluate more people and more questions, the basic evaluation was finished in
1891. Hollerith’s company continued to play an important role in the development
of the information-processing industry; since 1924, it hasbeen known as Interna-
tional Business Machines (IBM). Sorting is important for census statistics because
one often wants to form subcollections, for example, all persons between age 20 and
30 and living on a farm. Two applications of sorting solve theproblem. First, we sort
all persons by age and form the subcollection of persons between 20 and 30 years of
age. Then we sort the subcollection by home and extract the subcollection of persons
living on a farm.

Although we probably all have an intuitive concept of whatsorting is about,
let us give a formal definition. The input is a sequences = 〈e1, . . . ,en〉 of n ele-
ments. Each elementei has an associatedkey ki = key(ei). The keys come from an
ordered universe, i.e., there is alinear order≤ defined on the keys.2 For ease of
notation, we extend the comparison relation to elements so that e≤ e′ if and only

1 The photograph was taken by C. M. Bell (see US Library of Congress’s Prints and Pho-
tographs Division, ID cph.3c15982).

2 A linear order is a reflexive, transitive, and weakly antisymmetric relation. In contrast to a
total order, it allows equivalent elements (see Appendix A for details).

FR
E

E
C

O
P

Y
100 5 Sorting and Selection

if key(e) ≤ key(e′). The task is to produce a sequences′ = 〈e′1, . . . ,e′n〉 such thats′

is a permutation ofs and such thate′1 ≤ e′2 ≤ ·· · ≤ e′n. Observe that the ordering of
equivalent elements is arbitrary.

Although different comparison relations for the same data type may make sense,
the most frequent relations are the obvious order for numbers and thelexicographic
order (see Appendix A) for tuples, strings, and sequences. The lexicographic order
for strings comes in different flavors. We may treat corresponding lower-case and
upper-case characters as being equivalent, and different rules for treating accented
characters are used in different contexts.

Exercise 5.1.Given linear orders≤A for A and≤B for B, define a linear order on
A×B.

Exercise 5.2.Define a total order for complex numbers with the property that x≤ y
implies|x| ≤ |y|.

Sorting is a ubiquitous algorithmic tool; it is frequently used as a preprocessing
step in more complex algorithms. We shall give some examples.

• Preprocessing for fast search. In Sect. 2.5 on binary search, we have already
seen that a sorted directory is easier to search, both for humans and computers.
Moreover, a sorted directory supports additional operations, such as finding all
elements in a certain range. We shall discuss searching in more detail in Chap. 7.
Hashing is a method for searching unordered sets.

• Grouping. Often, we want to bring equal elements together to count them, elimi-
nate duplicates, or otherwise process them. Again, hashingis an alternative. But
sorting has advantages, since we shall see rather fast, space-efficient, determinis-
tic sorting algorithm that scale to huge data sets.

• Processing in a sorted order. Certain algorithms become very simple if the inputs
are processed in sorted order. Exercise 5.3 gives an example. Other examples are
Kruskal’s algorithm in Sect. 11.3 and several of the algorithms for the knapsack
problem in Chap. 12. You may also want to remember sorting when you solve
Exercise 8.6 on interval graphs.

In Sect. 5.1, we shall introduce several simple sorting algorithms. They have
quadratic complexity, but are still useful for small input sizes. Moreover, we shall
learn some low-level optimizations. Section 5.2 introduces mergesort, a simple
divide-and-conquer sorting algorithm that runs in time O(nlogn). Section 5.3 estab-
lishes that this bound is optimal for allcomparison-basedalgorithms, i.e., algorithms
that treat elements as black boxes that can only be compared and moved around. The
quicksortalgorithm described in Sect. 5.4 is again based on the divide-and-conquer
principle and is perhaps the most frequently used sorting algorithm. Quicksort is
also a good example of a randomized algorithm. The idea behind quicksort leads to a
simple algorithm for a problem related to sorting. Section 5.5 explains how thek-th
smallest ofn elements can beselectedin time O(n). Sorting can be made even faster
than the lower bound obtained in Sect. 5.3 by looking at the bit patterns of the keys,
as explained in Sect. 5.6. Finally, Section 5.7 generalizesquicksort and mergesort to
very good algorithms for sorting inputs that do not fit into internal memory.

FR
E

E
C

O
P

Y
5.1 Simple Sorters 101

Exercise 5.3 (a simple scheduling problem).A hotel manager has to processn ad-
vance bookings of rooms for the next season. His hotel hask identical rooms. Book-
ings contain an arrival date and a departure date. He wants tofind out whether there
are enough rooms in the hotel to satisfy the demand. Design analgorithm that solves
this problem in time O(nlogn). Hint: consider the set of all arrivals and departures.
Sort the set and process it in sorted order.

Exercise 5.4 (sorting with a small set of keys).Design an algorithm that sortsn
elements in O(k logk+n) expected time if there are onlyk different keys appearing
in the input. Hint: combine hashing and sorting.

Exercise 5.5 (checking). It is easy to check whether a sorting routine produces a
sorted output. It is less easy to check whether the output is also a permutation of the
input. But here is a fast and simple Monte Carlo algorithm forintegers: (a) Show that
〈e1, . . . ,en〉 is a permutation of〈e′1, . . . ,e′n〉 iff the polynomial

q(z) :=
n

∏
i=1

(z−ei)−
n

∏
i=1

(z−e′i)

is identically zero. Here,z is a variable. (b) For anyε > 0, let p be a prime withp >
max{n/ε,e1, . . . ,en,e′1, . . . ,e

′
n}. Now the idea is to evaluate the above polynomial

modp for a random valuez∈ [0..p−1]. Show that if〈e1, . . . ,en〉 is nota permutation
of 〈e′1, . . . ,e′n〉, then the result of the evaluation is zero with probability at mostε.
Hint: a nonzero polynomial of degreen has at mostn zeros.

5.1 Simple Sorters

We shall introduce two simple sorting techniques here:selection sortandinsertion
sort.

Selection sortrepeatedly selects the smallest element from the input sequence,
deletes it, and adds it to the end of the output sequence. The output sequence is
initially empty. The process continues until the input sequence is exhausted. For
example,

〈〉,〈4,7,1,1〉; 〈1〉,〈4,7,1〉; 〈1,1〉,〈4,7〉; 〈1,1,4〉,〈7〉; 〈1,1,4,7〉,〈〉 .

The algorithm can be implemented such that it uses a single array of n elements
and worksin-place, i.e., it needs no additional storage beyond the input arrayand a
constant amount of space for loop counters, etc. The runningtime is quadratic.

Exercise 5.6 (simple selection sort).Implement selection sort so that it sorts an ar-
ray with n elements in time O

(

n2
)

by repeatedly scanning the input sequence. The
algorithm should be in-place, i.e., the input sequence and the output sequence should
share the same array. Hint: the implementation operates inn phases numbered 1 to
n. At the beginning of thei-th phase, the firsti−1 locations of the array contain the
i−1 smallest elements in sorted order and the remainingn− i +1 locations contain
the remaining elements in arbitrary order.

FR
E

E
C

O
P

Y
102 5 Sorting and Selection

In Sect. 6.5, we shall learn about a more sophisticated implementation where the
input sequence is maintained as apriority queue. Priority queues support efficient
repeated selection of the minimum element. The resulting algorithm runs in time
O(nlogn) and is frequently used. It is efficient, it is deterministic,it works in-place,
and the input sequence can be dynamically extended by elements that are larger than
all previously selected elements. The last feature is important in discrete-event sim-
ulations, where events are to be processed in increasing order of time and processing
an event may generate further events in the future.

Selection sort maintains the invariant that the output sequence is sorted by care-
fully choosing the element to be deleted from the input sequence. Insertion sort
maintains the same invariant by choosing an arbitrary element of the input sequence
but taking care to insert this element at the right place in the output sequence. For
example,

〈〉,〈4,7,1,1〉; 〈4〉,〈7,1,1〉; 〈4,7〉,〈1,1〉; 〈1,4,7〉,〈1〉; 〈1,1,4,7〉,〈〉 .

Figure 5.1 gives an in-place array implementation of insertion sort. The implementa-
tion is straightforward except for a small trick that allowsthe inner loop to use only
a single comparison. When the elemente to be inserted is smaller than all previously
inserted elements, it can be inserted at the beginning without further tests. Otherwise,
it suffices to scan the sorted part ofa from right to left whilee is smaller than the
current element. This process has to stop, becausea[1]≤ e.

In the worst case, insertion sort is quite slow. For example,if the input is sorted
in decreasing order, each input element is moved all the way to a[1], i.e., in iteration
i of the outer loop,i elements have to be moved. Overall, we obtain

n

∑
i=2

(i−1) =−n+
n

∑
i=1

i =
n(n+1)

2
−n =

n(n−1)

2
= Ω

(

n2)

movements of elements (see also (A.11)).
Nevertheless, insertion sort is useful. It is fast for smallinputs (say,n≤ 10) and

hence can be used as the base case in divide-and-conquer algorithms for sorting.

Procedure insertionSort(a : Array [1..n] of Element)
for i :=2 to n do

invariant a[1]≤ ·· · ≤ a[i−1]
// movea[i] to the right place
e:=a[i]
if e< a[1] then // new minimum

for j := i downto 2 do a[j] :=a[j−1]
a[1] :=e

else // usea[1] as a sentinel
for j := i downto−∞ while a[j−1] > e do a[j] :=a[j−1]
a[j] :=e

Fig. 5.1.Insertion sort.

FR
E

E
C

O
P

Y
5.2 Mergesort – an O(nlogn) Sorting Algorithm 103

Furthermore, in some applications the input is already “almost” sorted, and in this
situation insertion sort will be fast.

Exercise 5.7 (almost sorted inputs).Prove that insertion sort runs in time O(n+D)
whereD = ∑i |r(ei)− i| andr(ei) is therank (position) ofei in the sorted output.

Exercise 5.8 (average-case analysis).Assume that the input to an insertion sort is
a permutation of the numbers 1 ton. Show that the average execution time over all
possible permutations isΩ

(

n2
)

. Hint: argue formally that about one-third of the input
elements in the right third of the array have to be moved to theleft third of the array.
Can you improve the argument to show that, on average,n2/4−O(n) iterations of
the inner loop are needed?

Exercise 5.9 (insertion sort with few comparisons).Modify the inner loops of the
array-based insertion sort algorithm in Fig. 5.1 so that it needs only O(nlogn) com-
parisons between elements. Hint: use binary search as discussed in Chap. 7. What is
the running time of this modification of insertion sort?

Exercise 5.10 (efficient insertion sort?).Use the data structure for sorted sequences
described in Chap. 7 to derive a variant of insertion sort that runs in time O(nlogn).

*Exercise 5.11 (formal verification).Use your favorite verification formalism, for
example Hoare calculus, to prove that insertion sort produces a permutation of the
input (i.e., it produces a sorted permutation of the input).

5.2 Mergesort – anO(nlogn) Sorting Algorithm

Mergesort is a straightforward application of the divide-and-conquer principle. The
unsorted sequence is split into two parts of about equal size. The parts are sorted
recursively, and the sorted parts are merged into a single sorted sequence. This ap-
proach is efficient because merging two sorted sequencesa andb is quite simple.
The globally smallest element is either the first element ofa or the first element of
b. So we move the smaller element to the output, find the second smallest element
using the same approach, and iterate until all elements havebeen moved to the out-
put. Figure 5.2 gives pseudocode, and Figure 5.3 illustrates a sample execution. If
the sequences are represented as linked lists (see, Sect. 3.1), no allocation and deal-
location of list items is needed. Each iteration of the innerloop of mergeperforms
one element comparison and moves one element to the output. Each iteration takes
constant time. Hence, merging runs in linear time.

Theorem 5.1.The function merge, applied to sequences of total length n, executes
in timeO(n) and performs at most n−1 element comparisons.

For the running time of mergesort, we obtain the following result.

Theorem 5.2.Mergesort runs in timeO(nlogn) and performs no more than⌈nlogn⌉
element comparisons.

FR
E

E
C

O
P

Y
104 5 Sorting and Selection

Function mergeSort(〈e1, . . . ,en〉) : Sequenceof Element
if n = 1 then return 〈e1〉
else returnmerge(mergeSort(〈e1, . . . ,e⌊n/2⌋〉),

mergeSort(〈e⌊n/2⌋+1, . . . ,en〉))

// merging two sequences represented as lists
Function merge(a,b : Sequenceof Element) : Sequenceof Element

c:= 〈〉
loop

invariant a, b, andc are sorted and∀e∈ c,e′ ∈ a∪b : e≤ e′

if a.isEmpty then c.concat(b); return c
if b.isEmpty then c.concat(a); return c
if a.first≤ b.first then c.moveToBack(a.first)
else c.moveToBack(b.first)

Fig. 5.2.Mergesort.

〈2,7,1,8,2,8,1〉

〈1,1,2,2,7,8,8〉

〈2,7,1〉

〈1,2,7〉

〈2〉

〈2〉

〈7,1〉

〈1,7〉

〈7〉

〈8,2,8,1〉

〈1,2,8,8〉

〈8,1〉

〈1,8〉

〈1〉〈1〉 〈8〉〈8〉

〈8,2〉

〈2,8〉
merge

merge

merge

split

split

split a b c operation
〈1,2,7〉 〈1,2,8,8〉 〈〉 movea
〈2,7〉 〈1,2,8,8〉 〈1〉 moveb
〈2,7〉 〈2,8,8〉 〈1,1〉 movea
〈7〉 〈2,8,8〉 〈1,1,2〉 moveb
〈7〉 〈8,8〉 〈1,1,2,2〉 movea
〈〉 〈8,8〉 〈1,1,2,2,7〉 concatb
〈〉 〈〉 〈1,1,2,2,7,8,8〉

Fig. 5.3.Execution ofmergeSort(〈2,7,1,8,2,8,1〉). The left part illustrates the recursion in
mergeSortand theright part illustrates themergein the outermost call

Proof. Let C(n) denote the worst-case number of element comparisons performed.
We haveC(1) = 0 andC(n)≤C(⌊n/2⌋)+C(⌈n/2⌉)+n−1, using Theorem 5.1. The
master theorem for recurrence relations (2.5) suggests that C(n) = O(nlogn). We
shall give two proofs. The first proof shows thatC(n) ≤ 2n⌈logn⌉, and the second
proof shows thatC(n)≤ n⌈logn⌉.

Forn a power of two, we defineD(1) = 0 andD(n) = 2D(n/2)+n. ThenD(n) =
nlogn for n a power of two, by the master theorem for recurrence relations. We claim
thatC(n)≤ D(2k), wherek is such that 2k−1 < n≤ 2k. ThenC(n)≤ D(2k) = 2kk≤
2n⌈logn⌉. It remains to argue the inequalityC(n) ≤ D(2k). We use induction onk.
For k = 0, we haven = 1 andC(1) = 0 = D(1), and the claim certainly holds. For
k > 1, we observe that⌊n/2⌋ ≤ ⌈n/2⌉ ≤ 2k−1, and hence

C(n)≤C(⌊n/2⌋)+C(⌈n/2⌉)+n−1≤ 2D(2k−1)+2k−1≤ D(2k) .

This completes the first proof. We turn now to the second, refined proof. We prove
that

FR
E

E
C

O
P

Y
5.2 Mergesort – an O(nlogn) Sorting Algorithm 105

C(n)≤ n⌈logn⌉−2⌈logn⌉+1≤ nlogn

by induction overn. For n = 1, the claim is certainly true. So, assumen > 1. We
distinguish two cases. Assume first that we have 2k−1 < ⌊n/2⌋ ≤ ⌈n/2⌉ ≤ 2k for
some integerk. Then⌈log⌊n/2⌋⌉= ⌈log⌈n/2⌉⌉= k and⌈logn⌉= k+1, and hence

C(n)≤C(⌊n/2⌋)+C(⌈n/2⌉)+n−1

≤
(

⌊n/2⌋k−2k +1
)

+
(

⌈n/2⌉k−2k +1
)

+n−1

= nk+n−2k+1+1 = n(k+1)−2k+1+1 = n⌈logn⌉−2⌈logn⌉+1 .

Otherwise, we have⌊n/2⌋ = 2k−1 and ⌈n/2⌉ = 2k−1 + 1 for some integerk, and
therefore⌈log⌊n/2⌋⌉= k−1, ⌈log⌈n/2⌉⌉= k, and⌈logn⌉= k+1. Thus

C(n)≤C(⌊n/2⌋)+C(⌈n/2⌉)+n−1

≤
(

2k−1(k−1)−2k−1+1
)

+
(

(2k−1 +1)k−2k+1
)

+2k +1−1

= (2k +1)k−2k−1−2k−1+1+1

= (2k +1)(k+1)−2k+1+1 = n⌈logn⌉−2⌈logn⌉+1 .

The bound for the execution time can be verified using a similar recurrence relation.
⊓⊔

Mergesort is the method of choice for sorting linked lists and is therefore fre-
quently used in functional and logical programming languages that have lists as their
primary data structure. In Sect. 5.3, we shall see that mergesort is basically optimal as
far as the number of comparisons is concerned; so it is also a good choice if compar-
isons are expensive. When implemented using arrays, mergesort has the additional
advantage that it streams through memory in a sequential way. This makes it efficient
in memory hierarchies. Section 5.7 has more on that issue. Mergesort is still not the
usual method of choice for an efficient array-based implementation, however, since
mergedoes not work in-place. (But see Exercise 5.17 for a possibleway out.)

Exercise 5.12.Explain how to insertk new elements into a sorted list of sizen in
time O(k logk+n).

Exercise 5.13.We discussedmergefor lists but used abstract sequences for the de-
scription ofmergeSort. Give the details ofmergeSortfor linked lists.

Exercise 5.14.Implement mergesort in a functional programming language.

Exercise 5.15.Give an efficient array-based implementation of mergesort in your fa-
vorite imperative programming language. Besides the inputarray, allocate one aux-
iliary array of sizen at the beginning and then use these two arrays to store all inter-
mediate results. Can you improve the running time by switching to insertion sort for
small inputs? If so, what is the optimal switching point in your implementation?

FR
E

E
C

O
P

Y
106 5 Sorting and Selection

Exercise 5.16.The way we describemerge, there are three comparisons for each
loop iteration – one element comparison and two terminationtests. Develop a variant
using sentinels that needs only one termination test. Can you do this task without
appending dummy elements to the sequences?

Exercise 5.17.Exercise 3.20 introduced a list-of-blocks representationfor sequences.
Implement merging and mergesort for this data structure. During merging, reuse
emptied input blocks for the output sequence. Compare the space and time efficiency
of mergesort for this data structure, for plain linked lists, and for arrays. Pay attention
to constant factors.

5.3 A Lower Bound

Algorithms give upper bounds on the complexity of a problem.By the preceding
discussion, we know that we can sortn items in time O(nlogn). Can we do better,
and maybe even achieve linear time? A “yes” answer requires abetter algorithm
and its analysis. But how could we potentially argue a “no” answer? We would have
to argue that no algorithm, however ingenious, can run in time o(nlogn). Such an
argument is called alower bound. So what is the answer? The answer is both no and
yes. The answer is no, if we restrict ourselves to comparison-based algorithms, and
the answer is yes if we go beyond comparison-based algorithms. We shall discuss
non-comparison-based sorting in Sect. 5.6.

So what is a comparison-based sorting algorithm? The input is a set{e1, . . . ,en}
of n elements, and the only way the algorithm can learn about its input is by compar-
ing elements. In particular, it is not allowed to exploit therepresentation of keys, for
example as bit strings. Deterministic comparison-based algorithms can be viewed as
trees. They make an initial comparison; for instance, the algorithms asks “ei ≤ ej?”,
with outcomes yes and no. On the basis of the outcome, the algorithm proceeds to
the next comparison. The key point is that the comparison made next depends only
on the outcome of all preceding comparisons and nothing else. Figure 5.4 shows a
sorting tree for three elements.

When the algorithm terminates, it must have collected sufficient information so
that it can commit to a permutation of the input. When can it commit? We perform the
following thought experiment. We assume that the input keysare distinct, and con-
sider any of then! permutations of the input, sayπ . The permutationπ corresponds
to the situation thateπ(1) < eπ(2) < .. . < eπ(n). We answer all questions posed by the
algorithm so that they conform to the ordering defined byπ . This will lead us to a
leaf ℓπ of the comparison tree.

Lemma 5.3.Let π andσ be two distinct permutations of n elements. The leavesℓπ
andℓσ must then be distinct.

Proof. Assume otherwise. In a leaf, the algorithm commits to some ordering of the
input and so it cannot commit to bothπ andσ . Say it commits toπ . Then, on an input
ordered according toσ , the algorithm is incorrect, which is a contradiction. ⊓⊔

FR
E

E
C

O
P

Y
5.3 A Lower Bound 107

The lemma above tells us that any comparison tree for sortingmust have at least
n! leaves. Since a tree of depthT has at most 2T leaves, we must have

2T ≥ n! or T ≥ logn! .

Via Stirling’s approximation to the factorial (A.9), we obtain

T ≥ logn! ≥ log
(n

e

)n
= nlogn−nloge .

Theorem 5.4.Any comparison-based sorting algorithm needs nlogn−O(n) com-
parisons in the worst case.

We state without proof that this bound also applies to randomized sorting algo-
rithms and to the average-case complexity of sorting, i.e.,worst-case instances are
not much more difficult than random instances. Furthermore,the bound applies even
if we only want to solve the seemingly simpler problem of checking whether some
element appears twice in a sequence.

Theorem 5.5.Any comparison-based sorting algorithm needs nlogn−O(n) com-
parisons on average, i.e.,

∑π dπ
n!

= nlogn−O(n) ,

where the sum extends over all n! permutations of the n elements and dπ is the depth
of the leafℓπ .

Exercise 5.18.Show that any comparison-based algorithm for determining the small-
est ofn elements requiresn−1 comparisons. Show also that any comparison-based
algorithm for determining the smallest and second smallestelements ofn elements
requires at leastn−1+ logn comparisons. Give an algorithm with this performance.

≤

≤

≤

≤

≤

>

>

>

>

>
e1?e2

e2?e3 e2?e3

e1?e3 e1?e3e1 ≤ e2 ≤ e3

e1 ≤ e3 < e2 e3 < e1 ≤ e2 e2 < e1 ≤ e3 e2 ≤ e3 < e1

e1 > e2 > e3

Fig. 5.4. A tree that sorts three elements. We first comparee1 ande2. If e1 ≤ e2, we compare
e2 with e3. If e2 ≤ e3, we havee1 ≤ e2 ≤ e3 and are finished. Otherwise, we comparee1 with
e3. For either outcome, we are finished. Ife1 > e2, we comparee2 with e3. If e2 > e3, we have
e1 > e2 > e3 and are finished. Otherwise, we comparee1 with e3. For either outcome, we are
finished. The worst-case number of comparisons is three. Theaverage number is(2+3+3+
2+3+3)/6 = 8/3

FR
E

E
C

O
P

Y
108 5 Sorting and Selection

Exercise 5.19.The element uniqueness problemis the task of deciding whether in
a set ofn elements, all elements are pairwise distinct. Argue that comparison-based
algorithms requireΩ(nlogn) comparisons. Why does this not contradict the fact that
we can solve the problem in linear expected time using hashing?

Exercise 5.20 (lower bound for average case).With the notation above, letdπ be
the depth of the leafℓπ . Argue thatA = (1/n!)∑π dπ is the average-case complexity
of a comparison-based sorting algorithm. Try to show thatA≥ logn!. Hint: prove
first that ∑π 2−dπ ≤ 1. Then consider the minimization problem “minimize∑π dπ
subject to∑π 2−dπ ≤ 1”. Argue that the minimum is attained when alldi ’s are equal.

Exercise 5.21 (sorting small inputs optimally).Give an algorithm for sortingk el-
ements using at most⌈logk!⌉ element comparisons. (a) Fork∈ {2,3,4}, use merge-
sort. (b) Fork= 5, you are allowed to use seven comparisons. This is difficult. Merge-
sort does not do the job, as it uses up to eight comparisons. (c) For k∈ {6,7,8}, use
the casek = 5 as a subroutine.

5.4 Quicksort

Quicksort is a divide-and-conquer algorithm that is complementary to the mergesort
algorithm of Sect. 5.2. Quicksort does all the difficult workbeforethe recursive calls.
The idea is to distribute the input elements into two or more sequences that represent
nonoverlapping ranges of key values. Then, it suffices to sort the shorter sequences
recursively and concatenate the results. To make the duality to mergesort complete,
we would like to split the input into two sequences of equal size. Unfortunately, this
is a nontrivial task. However, we can come close by picking a random splitter ele-
ment. The splitter element is usually called thepivot. Let p denote the pivot element
chosen. Elements are classified into three sequencesa, b, andc of elements that are
smaller than, equal to, or larger thanp, respectively. Figure 5.5 gives a high-level
realization of this idea, and Figure 5.6 depicts a sample execution. Quicksort has an
expected execution time of O(nlogn), as we shall show in Sect. 5.4.1. In Sect. 5.4.2,
we discuss refinements that have made quicksort the most widely used sorting algo-
rithm in practice.

Function quickSort(s : Sequenceof Element) : Sequenceof Element
if |s| ≤ 1 then return s // base case
pick p∈ s uniformly at random // pivot key
a:= 〈e∈ s : e< p〉
b:= 〈e∈ s : e= p〉
c:= 〈e∈ s : e> p〉
return concatenation of quickSort(a), b, and quickSort(c)

Fig. 5.5.High-level formulation of quicksort for lists.

FR
E

E
C

O
P

Y
5.4 Quicksort 109

〈3,6,8,1,0,7,2,4,5,9〉

〈1,0,2〉

〈0〉 〈1〉 〈2〉

〈3〉 〈6,8,7,4,5,9〉

〈4,5〉

〈〉 〈4〉 〈5〉

〈6〉 〈8,7,9〉

〈7〉 〈8〉 〈9〉

Fig. 5.6.Execution ofquickSort(Fig. 5.5) on〈3,6,8,1,0,7,2,4,5,9〉 using the first element
of a subsequence as the pivot. The first call of quicksort uses3 as the pivot and generates the
subproblems〈1,0,2〉, 〈3〉, and〈6,8,7,4,5,9〉. The recursive call for the third subproblem uses
6 as a pivot and generates the subproblems〈4,5〉, 〈6〉, and〈8,7,9〉

5.4.1 Analysis

To analyze the running time of quicksort for an input sequence s= 〈e1, . . . ,en〉, we
focus on the number of element comparisons performed. We allow three-waycom-
parisons here, with possible outcomes “smaller”, “equal”,and “larger”. Other op-
erations contribute only constant factors and small additive terms to the execution
time.

Let C(n) denote the worst-case number of comparisons needed for any input
sequence of sizen and any choice of pivots. The worst-case performance is easily
determined. The subsequencesa, b, andc in Fig. 5.5 are formed by comparing the
pivot with all other elements. This makesn− 1 comparisons. Assume there arek
elements smaller than the pivot andk′ elements larger than the pivot. We obtain
C(0) = C(1) = 0 and

C(n)≤ n−1+max
{

C(k)+C(k′) : 0≤ k≤ n−1,0≤ k′ < n−k
}

.

It is easy to verify by induction that

C(n)≤ n(n−1)

2
= Θ

(

n2) .

The worst case occurs if all elements are different and we always pick the largest or
smallest element as the pivot. ThusC(n) = n(n−1)/2.

The expected performance is much better. We first argue for anO(nlogn) bound
and then show a bound of 2nlnn. We concentrate on the case where all elements are
different. Other cases are easier because a pivot that occurs several times results in
a larger middle sequenceb that need not be processed any further. Consider a fixed
elementei , and letXi denote the total number of timesei is compared with a pivot
element. Then∑i Xi is the total number of comparisons. Wheneverei is compared
with a pivot element, it ends up in a smaller subproblem. Therefore,Xi ≤ n− 1,
and we have another proof for the quadratic upper bound. Let us call a comparison
“good” for ei if ei moves to a subproblem of at most three-quarters the size. Anyei

FR
E

E
C

O
P

Y
110 5 Sorting and Selection

can be involved in at most log4/3n good comparisons. Also, the probability that a
pivot which is good forei is chosen, is at least 1/2; this holds because a bad pivot
must belong to either the smallest or the largest quarter of the elements. So E[Xi] ≤
2log4/3n, and hence E[∑i Xi] = O(nlogn). We shall now give a different argument
and a better bound.

Theorem 5.6.The expected number of comparisons performed by quicksort is

C̄(n)≤ 2nlnn≤ 1.45nlogn .

Proof. Let s′= 〈e′1, . . . ,e′n〉 denote the elements of the input sequence in sorted order.
Elementse′i ande′j are compared at most once, and only if one of them is picked as a
pivot. Hence, we can count comparisons by looking at the indicator random variables
Xi j , i < j, whereXi j = 1 if e′i ande′j are compared andXi j = 0 otherwise. We obtain

C̄(n) = E

[

n

∑
i=1

n

∑
j=i+1

Xi j

]

=
n

∑
i=1

n

∑
j=i+1

E[Xi j] =
n

∑
i=1

n

∑
j=i+1

prob(Xi j = 1) .

The middle transformation follows from the linearity of expectations (A.2). The
last equation uses the definition of the expectation of an indicator random variable
E[Xi j] = prob(Xi j = 1). Before we can further simplify the expression forC̄(n), we
need to determine the probability ofXi j being 1.

Lemma 5.7.For any i< j, prob(Xi j = 1) =
2

j− i +1
.

Proof. Consider thej− i +1-element setM = {e′i , . . . ,e′j}. As long as no pivot from
M is selected,e′i ande′j are not compared, but all elements fromM are passed to the
same recursive calls. Eventually, a pivotp from M is selected. Each element inM has
the same chance 1/|M| of being selected. Ifp = e′i or p = e′j we haveXi j = 1. The
probability for this event is 2/|M|= 2/(j− i +1). Otherwise,e′i ande′j are passed to
different recursive calls, so that they will never be compared. ⊓⊔

Now we can finish proving Theorem 5.6 using relatively simplecalculations:

C̄(n) =
n

∑
i=1

n

∑
j=i+1

prob(Xi j = 1) =
n

∑
i=1

n

∑
j=i+1

2
j− i +1

=
n

∑
i=1

n−i+1

∑
k=2

2
k

≤
n

∑
i=1

n

∑
k=2

2
k

= 2n
n

∑
k=2

1
k

= 2n(Hn−1)≤ 2n(1+ lnn−1) = 2nlnn .

For the last three steps, recall the properties of then-th harmonic numberHn :=
∑n

k=11/k≤ 1+ lnn (A.12). ⊓⊔

Note that the calculations in Sect. 2.8 for left-to-right maxima were very similar,
although we had quite a different problem at hand.

FR
E

E
C

O
P

Y
5.4 Quicksort 111

5.4.2 *Refinements

We shall now discuss refinements of the basic quicksort algorithm. The resulting
algorithm, calledqsort, works in-place, and is fast and space-efficient. Figure 5.7
shows the pseudocode, and Figure 5.8 shows a sample execution. The refinements
are nontrivial and we need to discuss them carefully.

ProcedureqSort(a : Array of Element; ℓ, r : N) // Sort the subarraya[ℓ..r]
while r− ℓ+1 > n0 do // Use divide-and-conquer.

j :=pickPivotPos(a, ℓ, r) // Pick a pivot element and
swap(a[ℓ],a[j]) // bring it to the first position.
p:=a[ℓ] // p is the pivot now.
i := ℓ; j := r
repeat // a: ℓ i→ j← r

while a[i] < p do i++ // Skip over elements
while a[j] > p do j-- // already in the correct subarray.
if i ≤ j then // If partitioning is not yet complete,

swap(a[i],a[j]); i++; j-- // (*) swap misplaced elements and go on.
until i > j // Partitioning is complete.
if i < (ℓ+ r)/2 then qSort(a, ℓ, j); ℓ := i // Recurse on
else qSort(a, i , r); r := j // smaller subproblem.

endwhile
insertionSort(a[ℓ..r]) // faster for smallr− ℓ

Fig. 5.7.Refined quicksort for arrays.

The functionqsortoperates on an arraya. The argumentsℓ andr specify the sub-
array to be sorted. The outermost call isqsort(a,1,n). If the size of the subproblem is
smaller than some constantn0, we resort to a simple algorithm3 such as the insertion
sort shown in Fig. 5.1. The best choice forn0 depends on many details of the ma-
chine and compiler and needs to be determined experimentally; a value somewhere
between 10 and 40 should work fine under a variety of conditions.

The pivot element is chosen by a functionpickPivotPosthat we shall not specify
further. The correctness does not depend on the choice of thepivot, but the efficiency
does. Possible choices are the first element; a random element; the median (“middle”)
element of the first, middle, and last elements; and the median of a random sample
consisting ofk elements, wherek is either a small constant, say three, or a number
depending on the problem size, say

⌈√
r− ℓ+1

⌉

. The first choice requires the least
amount of work, but gives little control over the size of the subproblems; the last
choice requires a nontrivial but still sublinear amount of work, but yields balanced

3 Some authors propose leaving small pieces unsorted and cleaning up at the end using a
single insertion sort that will be fast, according to Exercise 5.7. Although this nice trick
reduces the number of instructions executed, the solution shown is faster on modern ma-
chines because the subarray to be sorted will already be in cache.

FR
E

E
C

O
P

Y
112 5 Sorting and Selection

i → ← j
3 6 8 1 0 7 2 4 5 9
2 6 8 1 0 73 4 5 9
2 0 8 1 6 7 3 4 5 9
2 0 1 8 6 7 3 4 5 9

j i

3 6 8 1 0 7 2 4 5 9
2 0 1|8 6 7 3 4 5 9

|
1 0|2|5 6 7 3 4|8 9

| | |
0 1| |4 3|7 6 5|8 9

	3 4	5 6	7
		5 6	

Fig. 5.8.Execution ofqSort(Fig. 5.7) on〈3,6,8,1,0,7,2,4,5,9〉 using the first element as the
pivot andn0 = 1. The left-hand sideillustrates the first partitioning step, showing elements
in bold that have just been swapped. Theright-hand sideshows the result of the recursive
partitioning operations

subproblems with high probability. After selecting the pivot p, we swap it into the
first position of the subarray (= positionℓ of the full array).

The repeat–until loop partitions the subarray into two proper (smaller) subarrays.
It maintains two indicesi and j. Initially, i is at the left end of the subarray andj is at
the right end;i scans to the right, andj scans to the left. After termination of the loop,
we havei = j +1 or i = j +2, all elements in the subarraya[ℓ.. j] are no larger than
p, all elements in the subarraya[i..r] are no smaller thanp, each subarray is a proper
subarray, and, ifi = j +2, a[i +1] is equal top. So, recursive callsqSort(a, ℓ, j) and
qsort(a, i, r) will complete the sort. We make these recursive calls in a nonstandard
fashion; this is discussed below.

Let us see in more detail how the partitioning loops work. In the first iteration
of the repeat loop,i does not advance at all but remains atℓ, and j moves left to the
rightmost element no larger thanp. So j ends atℓ or at a larger value; generally, the
latter is the case. In either case, we havei ≤ j. We swapa[i] anda[j], incrementi,
and decrementj. In order to describe the total effect more generally, we distinguish
cases.

If p is the unique smallest element of the subarray,j moves all the way toℓ, the
swap has no effect, andj = ℓ−1 andi = ℓ+ 1 after the increment and decrement.
We have an empty subproblemℓ..ℓ− 1 and a subproblemℓ + 1..r. Partitioning is
complete, and both subproblems are proper subproblems.

If j moves down toi + 1, we swap, incrementi to ℓ + 1, and decrementj to
ℓ. Partitioning is complete, and we have the subproblemsℓ..ℓ and ℓ + 1..r. Both
subarrays are proper subarrays.

If j stops at an index larger thani +1, we haveℓ < i ≤ j < r after executing the
line in Fig. 5.7 marked(*) . Also, all elements left ofi are at mostp (and there is at
least one such element), and all elements right ofj are at leastp (and there is at least
one such element). Since the scan loop fori skips only over elements smaller than
p and the scan loop forj skips only over elements larger thanp, further iterations
of the repeat loop maintain this invariant. Also, all further scan loops are guaranteed
to terminate by the claims in parentheses and so there is no need for an index-out-
of-bounds check in the scan loops. In other words, the scan loops are as concise as
possible; they consist of a test and an increment or decrement.

FR
E

E
C

O
P

Y
5.4 Quicksort 113

Let us next study how the repeat loop terminates. If we havei ≤ j + 2 after the
scan loops, we havei ≤ j in the termination test. Hence, we continue the loop. If
we havei = j −1 after the scan loops, we swap, incrementi, and decrementj. So
i = j + 1, and the repeat loop terminates with the proper subproblems ℓ.. j and i..r.
The casei = j after the scan loops can occur only ifa[i] = p. In this case, the swap
has no effect. After incrementingi and decrementingj, we havei = j +2, resulting in
the proper subproblemsℓ.. j and j +2..r, separated by one occurrence ofp. Finally,
when i > j after the scan loops, then eitheri goes beyondj in the first scan loop,
or j goes belowi in the second scan loop. By our invariant,i must stop atj + 1 in
the first case, and thenj does not move in its scan loop orj must stop ati−1 in the
second case. In either case, we havei = j +1 after the scan loops. The line marked
(*) is not executed, so that we have subproblemsℓ.. j andi..r, and both subproblems
are proper.

We have now shown that the partitioning step is correct, terminates, and generates
proper subproblems.

Exercise 5.22.Is it safe to make the scan loops skip over elements equal top? Is this
safe if it is known that the elements of the array are pairwisedistinct?

The refined quicksort handles recursion in a seemingly strange way. Recall that
we need to make the recursive callsqSort(a, ℓ, j) andqSort(a, i, r). We may make
these calls in either order. We exploit this flexibility by making the call for the smaller
subproblem first. The call for the larger subproblem would then be the last thing
done inqSort. This situation is known astail recursionin the programming-language
literature. Tail recursion can be eliminated by setting theparameters (ℓ andr) to the
right values and jumping to the first line of the procedure. This is precisely what
the while loop does. Why is this manipulation useful? Because it guarantees that
the recursion stack stays logarithmically bounded; the precise bound is⌈log(n/n0)⌉.
This follows from the fact that we make a single recursive call for a subproblem
which is at most half the size.

Exercise 5.23.What is the maximal depth of the recursion stack without the “smaller
subproblem first” strategy? Give a worst-case example.

*Exercise 5.24 (sorting strings using multikey quicksort [22]). Let s be a se-
quence ofn strings. We assume that each string ends in a special character that is
different from all “normal” characters. Show that the function mkqSort(s,1) below
sorts a sequences consisting ofdifferent strings. What goes wrong ifs contains
equal strings? Solve this problem. Show that the expected execution time ofmkqSort
is O(N+nlogn) if N = ∑e∈s |e|.

Function mkqSort(s : Sequenceof String, i : N) : Sequenceof String
assert∀e,e′ ∈ s : e[1..i−1] = e′[1..i−1]
if |s| ≤ 1 then return s // base case
pick p∈ suniformly at random // pivot character
return concatenation of mkqSort(〈e∈ s : e[i] < p[i]〉 , i),

mkqSort(〈e∈ s : e[i] = p[i]〉 , i +1), and
mkqSort(〈e∈ s : e[i] > p[i]〉 , i)

FR
E

E
C

O
P

Y
114 5 Sorting and Selection

Exercise 5.25.Implement several different versions ofqSort in your favorite pro-
gramming language. Use and do not use the refinements discussed in this section,
and study the effect on running time and space consumption.

5.5 Selection

Selection refers to a class of problems that are easily reduced to sorting but do not
require the full power of sorting. Lets= 〈e1, . . . ,en〉 be a sequence and call its sorted
versions′ = 〈e′1, . . . ,e′n〉. Selection of the smallest element requires determininge′1,
selection of the largest requires determininge′n, and selection of thek-th smallest
requires determininge′k. Selection of the median refers to selectinge⌊n/2⌋. Selection
of the median and also of quartiles is a basic problem in statistics. It is easy to de-
termine the smallest element or the smallest and the largestelement by a single scan
of a sequence in linear time. We now show that thek-th smallest element can also be
determined in linear time. The simple recursive procedure shown in Fig. 5.9 solves
the problem.

This procedure is akin to quicksort and is therefore calledquickselect. The key
insight is that it suffices to follow one of the recursive calls. As before, a pivot is
chosen, and the input sequences is partitioned into subsequencesa, b, andc contain-
ing the elements smaller than the pivot, equal to the pivot, and larger than the pivot,
respectively. If|a| ≥ k, we recurse ona, and if k > |a|+ |b|, we recurse onc with
a suitably adjustedk. If |a| < k≤ |a|+ |b|, the task is solved: the pivot has rankk
and we return it. Observe that the latter case also covers thesituation|s| = k = 1,
and hence no special base case is needed. Figure 5.10 illustrates the execution of
quickselect.

// Find an element with rankk
Function select(s : Sequenceof Element; k: N) : Element

assert|s| ≥ k
pick p∈ s uniformly at random // pivot key
a :=〈e∈ s : e< p〉
if |a| ≥ k then return select(a,k) // a

k

b :=〈e∈ s : e= p〉
if |a|+ |b| ≥ k then return p // a b = 〈p, . . . , p〉

k

c :=〈e∈ s : e> p〉
return select(c,k−|a|− |b|) // a b c

k

Fig. 5.9.Quickselect.
s k p a b c

〈3,1,4,5,9,2,6,5,3,5,8〉 6 2 〈1〉 〈2〉 〈3,4,5,9,6,5,3,5,8〉
〈3,4,5,9,6,5,3,5,8〉 4 6 〈3,4,5,5,3,4〉 〈6〉 〈9,8〉
〈3,4,5,5,3,5〉 4 5 〈3,4,3〉 〈5,5,5〉 〈〉

Fig. 5.10.The execution ofselect(〈3,1,4,5,9,2,6,5,3,5,8,6〉,6). The middle element (bold)
of the currents is used as the pivotp

FR
E

E
C

O
P

Y
5.5 Selection 115

As for quicksort, the worst-case execution time of quickselect is quadratic. But
the expected execution time is linear and hence is a logarithmic factor faster than
quicksort.

Theorem 5.8.The quickselect algorithm runs in expected timeO(n) on an input of
size n.

Proof. We shall give an analysis that is simple and shows a linear expected execution
time. It does not give the smallest constant possible. LetT(n) denote the expected
execution time of quickselect. We call a pivotgoodif neither|a| nor |c| is larger than
2n/3. Letγ denote the probability that a pivot is good; thenγ ≥ 1/3. We now make
the conservative assumption that the problem size in the recursive call is reduced
only for good pivots and that, even then, it is reduced only bya factor of 2/3. Since
the work outside the recursive call is linear inn, there is an appropriate constantc
such that

T(n)≤ cn+ γT

(

2n
3

)

+(1− γ)T (n) .

Solving forT(n) yields

T(n)≤ cn
γ

+T

(

2n
3

)

≤ 3cn+T

(

2n
3

)

≤ 3c

(

n+
2n
3

+
4n
9

+ . . .

)

≤ 3cn∑
i≥0

(

2
3

)i

≤ 3cn
1

1−2/3
= 9cn .

⊓⊔

Exercise 5.26.Modify quickselect so that it returns thek smallest elements.

Exercise 5.27.Give a selection algorithm that permutes an array in such a way that
thek smallest elements are in entriesa[1], . . . , a[k]. No further ordering is required
except thata[k] should have rankk. Adapt the implementation tricks used in the
array-based quicksort to obtain a nonrecursive algorithm with fast inner loops.

Exercise 5.28 (streaming selection).

(a) Develop an algorithm that finds thek-th smallest element of a sequence that
is presented to you one element at a time in an order you cannotcontrol. You
have only space O(k) available. This models a situation where voluminous data
arrives over a network or at a sensor.

(b) Refine your algorithm so that it achieves a running time O(nlogk). You may
want to read some of Chap. 6 first.

*(c) Refine the algorithm and its analysis further so that your algorithm runs in
average-case time O(n) if k = O(n/ logn). Here, “average” means that all or-
ders of the elements in the input sequence are equally likely.

FR
E

E
C

O
P

Y
116 5 Sorting and Selection

5.6 Breaking the Lower Bound

The title of this section is, of course, nonsense. A lower bound is an absolute state-
ment. It states that, in a certain model of computation, a certain task cannot be carried
out faster than the bound. So a lower bound cannot be broken. But be careful. It can-
not be broken within the model of computation used. The lowerbound does not
exclude the possibility that a faster solution exists in a richer model of computation.
In fact, we may even interpret the lower bound as a guideline for getting faster. It
tells us that we must enlarge our repertoire of basic operations in order to get faster.

What does this mean in the case of sorting? So far, we have restricted ourselves
to comparison-based sorting. The only way to learn about theorder of items was
by comparing two of them. For structured keys, there are moreeffective ways to
gain information, and this will allow us to break theΩ(nlogn) lower bound valid for
comparison-based sorting. For example, numbers and strings have structure; they are
sequences of digits and characters, respectively.

Let us start with a very simple algorithmKsort that is fast if the keys are small
integers, say in the range 0..K − 1. The algorithm runs in time O(n+K). We use
an arrayb[0..K−1] of bucketsthat are initially empty. We then scan the input and
insert an element with keyk into bucketb[k]. This can be done in constant time per
element, for example by using linked lists for the buckets. Finally, we concatenate all
the nonempty buckets to obtain a sorted output. Figure 5.11 gives the pseudocode.
For example, if the elements are pairs whose first element is akey in the range 0..3
and

s= 〈(3,a),(1,b),(2,c),(3,d),(0,e),(0, f),(3,g),(2,h),(1, i)〉 ,
we obtainb = [〈(0,e),(0, f)〉, 〈(1,b),(1, i)〉, 〈(2,c),(2,h)〉, 〈(3,a),(3,d),(3,g)〉]
and output〈(0,e),(0, f),(1,b),(1, i),(2,c),(2,h),(3,a),(3,d),(3,g)〉. This example
illustrates an important property ofKsort. It is stable, i.e., elements with the same key
inherit their relative order from the input sequence. Here,it is crucial that elements
areappendedto their respective bucket.

KSort can be used as a building block for sorting larger keys. The idea behind
radix sort is to view integer keys as numbers represented by digits in the range
0..K−1. ThenKSort is applied once for each digit. Figure 5.12 gives a radix-sorting
algorithm for keys in the range 0..Kd−1 that runs in time O(d(n+K)). The ele-
ments are first sorted by their least significant digit (LSD radix sort), then by the
second least significant digit, and so on until the most significant digit is used for
sorting. It is not obvious why this works. The correctness rests on the stability of

ProcedureKSort(s : Sequenceof Element)
b = 〈〈〉, . . . ,〈〉〉 : Array [0..K−1] of Sequenceof Element
foreach e∈ s do b[key(e)].pushBack(e) //

s e

b[0] b[1] b[2] b[3] b[4]

s:=concatenation of b[0], . . . ,b[K−1]

Fig. 5.11.Sorting with keys in the range 0..K−1.

FR
E

E
C

O
P

Y
5.6 Breaking the Lower Bound 117

ProcedureLSDRadixSort(s : Sequenceof Element)
for i :=0 to d−1 do

redefinekey(x) as(x div K i) mod K // d−1 ...
digits

... 1 0x
key(x)

i
KSort(s)
invariant s is sorted with respect to digitsi..0

Fig. 5.12.Sorting with keys in 0..Kd−1 usingleastsignificantdigit (LSD) radix sort.

ProcedureuniformSort(s : Sequenceof Element)
n:= |s|
b = 〈〈〉, . . . ,〈〉〉 : Array [0..n−1] of Sequenceof Element
foreach e∈ s do b[⌊key(e) ·n⌋].pushBack(e)
for i :=0 to n−1 do sortb[i] in time O(|b[i]| log|b[i]|)
s:=concatenation of b[0], . . . ,b[n−1]

Fig. 5.13.Sorting random keys in the range[0,1).

Ksort. SinceKSort is stable, the elements with the samei-th digit remain sorted
with respect to digitsi−1..0 during the sorting process with respect to digiti. For
example, ifK = 10,d = 3, and

s=〈017,042,666,007,111,911,999〉, we successively obtain

s=〈111,911,042,666,017,007,999〉 ,
s=〈007,111,911,017,042,666,999〉 , and

s=〈007,017,042,111,666,911,999〉 .

Radix sort starting with the most significant digit (MSD radix sort) is also pos-
sible. We applyKSort to the most significant digit and then sort each bucket recur-
sively. The only problem is that the buckets might be much smaller thanK, so that
it would be expensive to applyKSort to small buckets. We then have to switch to
another algorithm. This works particularly well if we can assume that the keys are
uniformly distributed. More specifically, let us now assumethat the keys are real
numbers with 0≤ key(e) < 1. The algorithmuniformSortin Fig. 5.13 scales these
keys to integers between 0 andn− 1 = |s| − 1, and groups them inton buckets,
where bucketb[i] is responsible for keys in the range[i/n,(i + 1)/n). For example,
if s= 〈0.8,0.4,0.7,0.6,0.3〉, we obtain five buckets responsible for intervals of size
0.2, and

b = [〈〉, 〈0.3〉, 〈0.4〉, 〈0.7,0.6〉, 〈0.8〉] ;

only b[3] = 〈0.7,0.6〉 is a nontrivial subproblem.uniformSortis very efficient for
randomkeys.

Theorem 5.9.If the keys are independent uniformly distributed random values in
[0,1), uniformSort sorts n keys in expected timeO(n) and worst-case timeO(nlogn).

FR
E

E
C

O
P

Y
118 5 Sorting and Selection

Proof. We leave the worst-case bound as an exercise and concentrateon the average
case. The total execution timeT is O(n) for setting up the buckets and concatenating
the sorted buckets, plus the time for sorting the buckets. Let Ti denote the time for
sorting thei-th bucket. We obtain

E[T] = O(n)+E

[

∑
i<n

Ti

]

= O(n)+ ∑
i<n

E[Ti] = O(n)+nE[T0] .

The second equality follows from the linearity of expectations (A.2), and the third
equality uses the fact that all bucket sizes have the same distribution for uniformly
distributed inputs. Hence, it remains to show that E[T0] = O(1). We shall prove the
stronger claim that E[T0] = O(1) even if a quadratic-time algorithm such as insertion
sort is used for sorting the buckets. The analysis is similarto the arguments used to
analyze the behavior of hashing in Chap. 4.

Let B0 = |b[0]|. We have E[T0] = O
(

E[B2
0]

)

. The random variableB0 obeys a
binomial distribution (A.7) withn trials and success probability 1/n, and hence

prob(B0 = i) =

(

n
i

)(

1
n

)i (

1− 1
n

)n−i

≤ ni

i!
1
ni =

1
i!
≤

(e
i

)i
,

where the last inequality follows from Stirling’s approximation to the factorial (A.9).
We obtain

E[B2
0] = ∑

i≤n

i2prob(B0 = i)≤∑
i≤n

i2
(e

i

)i

≤∑
i≤5

i2
(e

i

)i
+e2 ∑

i≥6

(e
i

)i−2

≤O(1)+e2 ∑
i≥6

(

1
2

)i−2

= O(1) ,

and hence E[T] = O(n) (note that the split ati = 6 allows us to conclude thate/i ≤
1/2). ⊓⊔

*Exercise 5.29.Implement an efficient sorting algorithm for elements with keys in
the range 0..K−1 that uses the data structure of Exercise 3.20 for the input and out-
put. The space consumption should ben+O(n/B+KB) for n elements, and blocks
of sizeB.

5.7 *External Sorting

Sometimes the input is so huge that it does not fit into internal memory. In this
section, we shall learn how to sort such data sets in the external-memory model
introduced in Sect. 2.2. This model distinguishes between afast internal memory
of sizeM and a large external memory. Data is moved in the memory hierarchy in

FR
E

E
C

O
P

Y
5.7 *External Sorting 119

formRuns formRuns formRuns formRuns

merge merge

make_things_

__aeghikmnst

as_simple_as

__aaeilmpsss

_possible_bu

__aaeilmpsss

t_no_simpler

__eilmnoprst

____aaaeeghiiklmmnpsssst ____bbeeiillmnoopprssstu

merge

________aaabbeeeeghiiiiklllmmmnnooppprsssssssttu

Fig. 5.14.An example of two-way mergesort with initial runs of length 12

blocks of sizeB. Scanning data is fast in external memory and mergesort is based
on scanning. We therefore take mergesort as the starting point for external-memory
sorting.

Assume that the input is given as an array in external memory.We shall describe
a nonrecursive implementation for the case where the numberof elementsn is di-
visible byB. We load subarrays of sizeM into internal memory, sort them using our
favorite algorithm, for exampleqSort, and write the sorted subarrays back to exter-
nal memory. We refer to the sorted subarrays asruns. Therun formation phasetakes
n/B block reads andn/B block writes, i.e., a total of 2n/B I/Os. We then merge pairs
of runs into larger runs in⌈log(n/M)⌉ merge phases, ending up with a single sorted
run. Figure 5.14 gives an example forn = 48 and runs of length 12.

How do we merge two runs? We keep one block from each of the two input runs
and from the output run in internal memory. We call these blocks buffers. Initially,
the input buffers are filled with the firstB elements of the input runs, and the output
buffer is empty. We compare the leading elements of the inputbuffers and move the
smaller element to the output buffer. If an input buffer becomes empty, we fetch the
next block of the corresponding input run; if the output buffer becomes full, we write
it to external memory.

Each merge phase reads all current runs and writes new runs oftwice the length.
Therefore, each phase needsn/B block reads andn/B block writes. Summing over
all phases, we obtain(2n/B)(1+ ⌈logn/M⌉) I/Os. This technique works provided
thatM ≥ 3B.

5.7.1 Multiway Mergesort

In general, internal memory can hold many blocks and not justthree. We shall de-
scribe how to make full use of the available internal memory during merging. The
idea is to merge more than just two runs; this will reduce the number of phases.
In k-way merging, we mergek sorted sequences into a single output sequence. In
each step we find the input sequence with the smallest first element. This element
is removed and appended to the output sequence. External-memory implementation
is easy as long as we have enough internal memory fork input buffer blocks, one
output buffer block, and a small amount of additional storage.

FR
E

E
C

O
P

Y
120 5 Sorting and Selection

For each sequence, we need to remember which element we are currently con-
sidering. To find the smallest element out of allk sequences, we keep their current
elements in apriority queue. A priority queue maintains a set of elements support-
ing the operations of insertion and deletion of the minimum.Chapter 6 explains how
priority queues can be implemented so that insertion and deletion take time O(logk)
for k elements. The priority queue tells us at each step, which sequence contains
the smallest element. We delete this element from the priority queue, move it to the
output buffer, and insert the next element from the corresponding input buffer into
the priority queue. If an input buffer runs dry, we fetch the next block of the corre-
sponding sequence, and if the output buffer becomes full, wewrite it to the external
memory.

How large can we choosek? We need to keepk+ 1 blocks in internal memory
and we need a priority queue fork keys. So we need(k+ 1)B+ O(k) ≤ M or k =
O(M/B). The number of merging phases is reduced to⌈logk(n/M)⌉, and hence the
total number of I/Os becomes

2
n
B

(

1+
⌈

logM/B
n
M

⌉)

. (5.1)

The difference from binary merging is the much larger base ofthe logarithm. In-
terestingly, the above upper bound for the I/O complexity ofsorting is also a lower
bound [5], i.e., under fairly general assumptions, no external sorting algorithm with
fewer I/O operations is possible.

In practice, the number of merge phases will be very small. Observe that a single
merge phase suffices as long asn≤M2/B. We first formM/B runs of lengthM each
and then merge these runs into a single sorted sequence. If internal memory stands
for DRAM and “external memory” stands for hard disks, this bound onn is no real
restriction, for all practical system configurations.

Exercise 5.30.Show that a multiway mergesort needs only O(nlogn) element com-
parisons.

Exercise 5.31 (balanced systems).Study the current market prices of computers,
internal memory, and mass storage (currently hard disks). Also, estimate the block
size needed to achieve good bandwidth for I/O. Can you find anyconfiguration where
multiway mergesort would require more than one merging phase for sorting an input
that fills all the disks in the system? If so, what fraction of the cost of that system
would you have to spend on additional internal memory to go back to a single merg-
ing phase?

5.7.2 Sample Sort

The most popular internal-memory sorting algorithm is not mergesort but quicksort.
So it is natural to look for an external-memory sorting algorithm based on quicksort.
We shall sketchsample sort. In expectation, it has the same performance guarantees
as multiway mergesort (5.1). Sample sort is easier to adapt to parallel disks and

FR
E

E
C

O
P

Y
5.7 *External Sorting 121

parallel processors than merging-based algorithms. Furthermore, similar algorithms
can be used for fast external sorting of integer keys along the lines of Sect. 5.6.

Instead of the single pivot element of quicksort, we now usek− 1 splitter el-
ements s1,. . . , sk−1 to split an input sequence intok output sequences, orbuckets.
Bucketi gets the elementse for which si−1 ≤ e< si . To simplify matters, we define
the artificial splitterss0 = −∞ andsk = ∞ and assume that all elements have differ-
ent keys. The splitters should be chosen in such a way that thebuckets have a size
of roughlyn/k. The buckets are then sorted recursively. In particular, buckets that fit
into the internal memory can subsequently be sorted internally. Note the similarity
to MSD-radix sort described in Sect. 5.6.

The main challenge is to find good splitters quickly. Sample sort uses a fast, sim-
ple randomized strategy. For some integera, we randomly choose(a+1)k−1 sam-
pleelements from the input. The sampleS is then sorted internally, and we define the
splitters assi = S[(a+1)i] for 1≤ i ≤ k−1, i.e., consecutive splitters are separated by
a samples, the first splitter is preceded bya samples, and the last splitter is followed
by a samples. Takinga = 0 results in a small sample set, but the splitting will not
be very good. Moving all elements to the sample will result inperfect splitters, but
the sample will be too big. The following analysis shows thatsettinga = O(logk)
achieves roughly equal bucket sizes at low cost for samplingand sorting the sample.

The most I/O-intensive part of sample sort is thek-way distribution of the input
sequence to the buckets. We keep one buffer block for the input sequence and one
buffer block for each bucket. These buffers are handled analogously to the buffer
blocks ink-way merging. If the splitters are kept in a sorted array, we can find the
right bucket for an input elemente in time O(logk) using binary search.

Theorem 5.10.Sample sort uses

O
(n

B

(

1+
⌈

logM/B
n
M

⌉))

expected I/O steps for sorting n elements. The internal workis O(nlogn).

We leave the detailed proof to the reader and describe only the key ingredient
of the analysis here. We usek = Θ(min(n/M,M/B)) buckets and a sample of size
O(k logk). The following lemma shows that with this sample size, it is unlikely that
any bucket has a size much larger than the average. We hide theconstant factors
behind O(·) notation because our analysis is not very tight in this respect.

Lemma 5.11.Let k≥ 2 and a+1 = 12lnk. A sample of size(a+1)k−1 suffices to
ensure that no bucket receives more than4n/k elements with probability at least1/2.

Proof. As in our analysis of quicksort (Theorem 5.6), it is useful tostudy the sorted
versions′ = 〈e′1, . . . ,e′n〉 of the input. Assume that there is a bucket with at least 4n/k
elements assigned to it. We estimate the probability of thisevent.

We split s′ into k/2 segments of length 2n/k. The j-th segmentt j contains ele-
mentse′2 jn/k+1 to e′2(j+1)n/k. If 4n/k elements end up in some bucket, there must be
some segmentt j such that all its elements end up in the same bucket. This can only

FR
E

E
C

O
P

Y
122 5 Sorting and Selection

happen if fewer thana+1 samples are taken fromt j , because otherwise at least one
splitter would be chosen fromt j and its elements would not end up in a single bucket.
Let us concentrate on a fixedj.

We use a random variableX to denote the number of samples taken fromt j .
Recall that we take(a+ 1)k− 1 samples. For each samplei, 1≤ i ≤ (a+ 1)k− 1,
we define an indicator variableXi with Xi = 1 if the i-th sample is taken fromt j

andXi = 0 otherwise. ThenX = ∑1≤i≤(a+1)k−1Xi . Also, theXi ’s are independent,
and prob(Xi = 1) = 2/k. Independence allows us to use the Chernoff bound (A.5) to
estimate the probability thatX < a+1. We have

E[X] = ((a+1)k−1) · 2
k

= 2(a+1)− 2
k
≥ 3(a+1)

2
.

HenceX < a+1 impliesX < (1−1/3)E[X], and so we can use (A.5) withε = 1/3.
Thus

prob(X < a+1)≤ e−(1/9)E[X]/2≤ e−(a+1)/12 = e− lnk =
1
k

.

The probability that an insufficient number of samples is chosen from a fixedt j is
thus at most 1/k, and hence the probability that an insufficient number is chosen
from somet j is at most(k/2) · (1/k) = 1/2. Thus, with probability at least 1/2, each
bucket receives fewer than 4n/k elements. ⊓⊔

Exercise 5.32.Work out the details of an external-memory implementation of sam-
ple sort. In particular, explain how to implement multiway distribution using 2n/B+
k+ 1 I/O steps if the internal memory is large enough to storek+ 1 blocks of data
and O(k) additional elements.

Exercise 5.33 (many equal keys).Explain how to generalize multiway distribution
so that it still works if some keys occur very often. Hint: there are at least two differ-
ent solutions. One uses the sample to find out which elements are frequent. Another
solution makes all elements unique by interpreting an element e at an input position
i as the pair(e, i).

*Exercise 5.34 (more accurate distribution).A larger sample size improves the
quality of the distribution. Prove that a sample of size O

(

(k/ε2) log(k/εm)
)

guar-
antees, with probability (at least 1−1/m), that no bucket has more than(1+ ε)n/k
elements. Can you get rid of theε in the logarithmic factor?

5.8 Implementation Notes

Comparison-based sorting algorithms are usually available in standard libraries, and
so you may not have to implement one yourself. Many librariesuse tuned implemen-
tations of quicksort.

Canned non-comparison-based sorting routines are less readily available. Fig-
ure 5.15 shows a careful array-based implementation ofKsort. It works well for

FR
E

E
C

O
P

Y
5.8 Implementation Notes 123

ProcedureKSortArray(a,b : Array [1..n] of Element)
c = 〈0, . . . ,0〉 : Array [0..K−1] of N // counters for each bucket
for i :=1 to n do c[key(a[i])]++ // Count bucket sizes

C :=0
for k :=0 to K−1 do (C,c[k]) :=(C+c[k],C) // Store∑i<k c[k] in c[k].

for i :=1 to n do // Distributea[i]
b[c[key(a[i])]] :=a[i]
c[key(a[i])]++

Fig. 5.15.Array-based sorting with keys in the range 0..K−1. The input is an unsorted array
a. The output isb, containing the elements ofa in sorted order. We first count the number of
inputs for each key. Then we form the partial sums of the counts. Finally, we write each input
element to the correct position in the output array.

small to medium-sized problems. For largeK andn, it suffers from the problem that
the distribution of elements to the buckets may cause a cachefault for every element.

To fix this problem, one can use multiphase algorithms similar to MSD radix sort.
The numberK of output sequences should be chosen in such a way that one block
from each bucket is kept in the cache (see also [134]). The distribution degreeK can
be larger when the subarray to be sorted fits into the cache. Wecan then switch to a
variant ofuniformSort(see Fig. 5.13).

Another important practical aspect concerns the type of elements to be sorted.
Sometimes we have rather large elements that are sorted withrespect to small keys.
For example, you may want to sort an employee database by lastname. In this sit-
uation, it makes sense to first extract the keys and store themin an array together
with pointers to the original elements. Then, only the key–pointer pairs are sorted.
If the original elements need to be brought into sorted order, they can be permuted
accordingly in linear time using the sorted key–pointer pairs.

Multiway merging of a small number of sequences (perhaps up to eight) deserves
special mention. In this case, the priority queue can be keptin the processor registers
[160, 206].

5.8.1 C/C++

Sorting is one of the few algorithms that is part of the C standard library. However,
the C sorting routineqsort is slower and harder to use than the C++ functionsort.
The main reason is that the comparison function is passed as afunction pointer and is
called for every element comparison. In contrast,sort uses the template mechanism
of C++ to figure out at compile time how comparisons are performed sothat the
code generated for comparisons is often a single machine instruction. The parame-
ters passed tosort are an iterator pointing to the start of the sequence to be sorted,
and an iterator pointing after the end of the sequence. In ourexperiments using an
Intel Pentium III and GCC 2.95,sorton arrays ran faster than our manual implemen-
tation of quicksort. One possible reason is that compiler designers may tune their

FR
E

E
C

O
P

Y
124 5 Sorting and Selection

code optimizers until they find that good code for the libraryversion of quicksort is
generated. There is an efficient parallel-disk external-memory sorter in STXXL [48],
an external-memory implementation of the STL. Efficient parallel sorters (parallel
quicksort and parallel multiway mergesort) for multicore machines are available with
theMulti-CoreStandardTemplateL ibrary [180, 125].

Exercise 5.35.Give a C or C++ implementation of the procedureqSortin Fig. 5.7.
Use only two parameters: a pointer to the (sub)array to be sorted, and its size.

5.8.2 Java

The Java 6 platform provides a methodsortwhich implements a stable binary merge-
sort forArraysandCollections. One can use a customizableComparator, but there
is also a default implementation for all classes supportingthe interfaceComparable.

5.9 Historical Notes and Further Findings

In later chapters, we shall discuss several generalizations of sorting. Chapter 6 dis-
cusses priority queues, a data structure that supports insertions of elements and re-
moval of the smallest element. In particular, insertingn elements followed by re-
peated deletion of the minimum amounts to sorting. Fast priority queues result in
quite good sorting algorithms. A further generalization isthesearch treesintroduced
in Chap. 7, a data structure for maintaining a sorted list that allows searching, insert-
ing, and removing elements in logarithmic time.

We have seen several simple, elegant, and efficient randomized algorithms in
this chapter. An interesting question is whether these algorithms can be replaced
by deterministic ones. Blum et al. [25] described a deterministic median selection
algorithm that is similar to the randomized algorithm discussed in Sect. 5.5. This
deterministic algorithm makes pivot selection more reliable using recursion: it splits
the input set into subsets of five elements, determines the median of each subset by
sorting the five-element subset, then determines the medianof the n/5 medians by
calling the algorithm recursively, and finally uses the median of the medians as the
splitter. The resulting algorithm has linear worst-case execution time, but the large
constant factor makes the algorithm impractical. (We invite the reader to set up a
recurrence for the running time and to show that it has a linear solution.)

There are quite practical ways to reduce the expected numberof comparisons re-
quired by quicksort. Using the median of three random elements yields an algorithm
with about 1.188nlogn comparisons. The median of three medians of three-element
subsets brings this down to≈ 1.094nlogn [20]. The number of comparisons can be
reduced further by making the number of elements consideredfor pivot selection de-
pendent on the size of the subproblem. Martinez and Roura [123] showed that for a
subproblem of sizem, the median ofΘ(

√
m) elements is a good choice for the pivot.

With this approach, the total number of comparisons becomes(1+o(1))nlogn, i.e.,
it matches the lower bound ofnlogn−O(n) up to lower-order terms. Interestingly,

FR
E

E
C

O
P

Y
5.9 Historical Notes and Further Findings 125

the above optimizations can be counterproductive. Although fewer instructions are
executed, it becomes impossible to predict when the inner while loops of quicksort
will be aborted. Since modern, deeply pipelined processorsonly work efficiently
when they can predict the directions of branches taken, the net effect on perfor-
mance can even be negative [102]. Therefore, in [167] , a comparison-based sorting
algorithm that avoids conditional branch instructions wasdeveloped. An interesting
deterministic variant of quicksort is proportion-extend sort [38].

A classical sorting algorithm of some historical interest is Shell sort[174, 100],
a generalization of insertion sort, that gains efficiency byalso comparing nonadja-
cent elements. It is still open whether some variant of Shellsort achieves O(nlogn)
average running time [100, 124].

There are some interesting techniques for improving external multiway merge-
sort. Thesnow plowheuristic [112, Sect. 5.4.1] forms runs of expected size 2M using
a fast memory of sizeM: whenever an element is selected from the internal priority
queue and written to the output buffer and the next element inthe input buffer can
extend the current run, we add it to the priority queue. Also,the use oftournament
treesinstead of general priority queues leads to a further improvement of multiway
merging [112].

Parallelism can be used to improve the sorting of very large data sets, either in the
form of a uniprocessor using parallel disks or in the form of amultiprocessor. Mul-
tiway mergesort and distribution sort can be adapted toD parallel disks bystriping,
i.e., anyD consecutive blocks in a run or bucket are evenly distributedover the disks.
Using randomization, this idea can be developed into almostoptimal algorithms that
also overlap I/O and computation [49]. The sample sort algorithm of Sect. 5.7.2 can
be adapted to parallel machines [24] and results in an efficient parallel sorter.

We have seen linear-time algorithms for highly structured inputs. A quite general
model, for which thenlogn lower bound does not hold, is theword model. In this
model, keys are integers that fit into a single memory cell, say 32- or 64-bit keys,
and the standard operations on words (bitwise-AND, bitwise-OR, addition, . . .) are
available in constant time. In this model, sorting is possible in deterministic time
O(nloglogn) [11]. With randomization, even O

(

n
√

loglogn
)

is possible [85].Flash
sort [149] is a distribution-based algorithm that works almost in-place.

Exercise 5.36 (Unix spellchecking).Assume you have a dictionary consisting of
a sorted sequence of correctly spelled words. To check a text, you convert it to a
sequence of words, sort it, scan the text and dictionary simultaneously, and output
the words in the text that do not appear in the dictionary. Implement this spellchecker
using Unix tools in a small number of lines of code. Can you do this in one line?

FR
E

E
C

O
P

Y

